
Advanced Drug Delivery Reviews 183 (2022) 114143
Contents lists available at ScienceDirect

Advanced Drug Delivery Reviews

journal homepage: www.elsevier .com/ locate/adr
Tools for computational design and high-throughput screening of
therapeutic enzymes
https://doi.org/10.1016/j.addr.2022.114143
0169-409X/� 2022 Elsevier B.V. All rights reserved.

⇑ Corresponding authors.
E-mail addresses: 222755@mail.muni.cz (D. Bednar), mazurenko@mail.muni.cz (S. Mazurenko), zbynek@chemi.muni.cz (Z. Prokop).

1 Joint first authors.
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Therapeutic enzymes are valuable biopharmaceuticals in various biomedical applications. They have
been successfully applied for fibrinolysis, cancer treatment, enzyme replacement therapies, and the treat-
ment of rare diseases. Still, there is a permanent demand to find new or better therapeutic enzymes,
which would be sufficiently soluble, stable, and active to meet specific medical needs. Here, we highlight
the benefits of coupling computational approaches with high-throughput experimental technologies,
which significantly accelerate the identification and engineering of catalytic therapeutic agents. New
enzymes can be identified in genomic and metagenomic databases, which grow thanks to next-
generation sequencing technologies exponentially. Computational design and machine learning methods
are being developed to improve catalytically potent enzymes and predict their properties to guide the
selection of target enzymes. High-throughput experimental pipelines, increasingly relying on microflu-
idics, ensure functional screening and biochemical characterization of target enzymes to reach efficient
therapeutic enzymes.
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1. Introduction

Enzymes are natural catalysts accelerating chemical reactions in
multiple catalytic cycles, leading to the conversion of substrates to
products. Enzymes play an important role in the pharmaceutical
industry because they catalyze chemical reactions selectively and effi-
ciently. Therapeutic enzymes stand out from non-enzymatic drugs as
they provide an advantage of binding specifically to their respective
targets, reduced toxicity, and minimal side effects. Moreover, enzy-
matic catalysis enables the conversion of multiple targets, including
prodrugs, simultaneously into the desired products. Therefore, thera-
peutic enzymes have shown diverse applications as enzybiotics, diges-
tive aids, anti-inflammatory, fibrinolytic and anti-cancer agents [1].

In the past hundred years, several types of therapeutic enzymes
have been developed. The first genetically engineered drug was insu-
lin in 1982. Activase (alteplase; recombinant human tissue plasmino-
gen activator) was the second recombinant protein drug to be
marketed. In 1987, Activase was approved by the Food and Drug
Administration (FDA) as the first recombinant enzyme drug [2]. This
clot-buster enzyme is used to treat heart attacks and acute stroke
caused by the artery blockage by a clot. In 1990, Adagen (pegadamase
bovine), a form of bovine adenosine deaminase, was approved to
treat patients afflicted with a chronic deficiency of adenosine deam-
inase [2]. Since then, more therapeutic enzymes have gained impor-
tance in pharmaceutical industries, such as L-asparaginase,
streptokinase, collagenase, ribonuclease, uricase, glucosidase, etc. [3].

These therapeutic enzymes are produced in large volumes at
good manufacturing practice quality by employing various fer-
mentation techniques and host organisms, ranging from bacteria
to yeast, fungi, and mammalian cells. The key technology enabling
the production of enzymes in sufficient amounts for therapeutic
applications is recombinant DNA technology, which can be com-
plemented with protein engineering, material sciences, and nan-
otechnologies [1]. Access to these modern biotechnologies is
critical since therapeutic applications cannot be adjusted to the
properties of a biocatalyst – the properties of enzymes must fit
the application. Therapeutic biocatalysts need to be primarily
stable, soluble and active, yet improving their resilience to non-
natural conditions represents a promising engineering strategy [4].

Therefore, it is necessary to either discover new enzymes from
specific organisms or improve existing enzymes through protein
engineering. This article provides an overview of modern computa-
tional tools suitable for identifying potentially exciting enzymes
and genomic/metagenomics databases and for enzyme engineer-
ing by molecular modeling, structural bioinformatics, and machine
learning. We also highlight the need to combine computational
approaches with efficient screening and biochemical characteriza-
tion of target enzymes by high-throughput experimental technolo-
gies (Fig. 1). Whenever possible, we provide examples of utilization
of a particular tool or experimental technique for the development
of therapeutic enzymes.
Fig. 1. Integration of computational and experimental approaches for the devel-
opment of efficient therapeutic enzymes. The close cooperation between the
computational and experimental approaches is depicted with a yin-yang scheme,
where major objectives of each approach are in boxes, and the key techniques are in
circles. These techniques are in the opposite color as they greatly depend on inputs
from the counterpart approach.
2. Identification of novel enzymes

2.1. Rule-based methods

Rule-based methods aim to predict enzymatically catalyzed
reactions and complete biochemical pathways. These methods
2

are integrated into many software tools and ready-to-use websites
(see Table 1). The data stored in the KEGG database developed by
Kanehisa and co-workers [5] is the single most important resource
typically used for deriving the rules, patterns and metabolic net-
works, and validation purposes.

PathPred is a web-based server that predicts plausible path-
ways of multi-step reactions starting from query compound [6].
This tool employs the match of biochemical structure transforma-
tion patterns and the global chemical structure alignment against
the reactant pair library. Biochemical structure transformation pat-
terns are derived from the KEGG PATHWAY database [5]. The ser-
ver uses local biochemical structure transformation patterns in 947
and 1397 reactant pairs to predict plausible pathways for microbial
biodegradation of environmental compounds and biosynthesis of
secondary plant metabolites, respectively. The server displays all



Table 1
Overview of the sequence-based computational tools for novel enzymes design and discovery. They are available at the given locations – most of them as web tools and the rest as
stand-alone programs. The table displays the tools discussed in Section 2 and therefore is not exhaustive.

Tool name Objective Prediction result Ref. Location

PathPred Pathway prediction Metabolic pathways of multi-step reactions [6] www.genome.jp/tools/pathpred/
PathSearch Similarity paths for query reactions [6] www.genome.jp/tools/pathsearch/
PathComp Putative reaction paths between two molecules [6] www.genome.jp/tools/pathcomp/
Retro-path Retro-pathway design Retrosynthesis based on generalized reaction rules [7] myexperiment.org/workflows/4987.html
METEOR Knowledge-based metabolic fate of chemicals [8] lhasalimited.org/products/meteor-nexus.htm
BNICE Generalized rules for retrosynthesis [9] lcsb-databases.epfl.ch/pathways/atlas/
BridgIT Enzyme binding pockets and reaction similarities [10] lcsb-databases.epfl.ch/pathways/Bridgit
Transform-

MinER
Substrates transformed into products at reaction centers [13] www.ebi.ac.uk/thornton-srv/transform-

miner/
antiSMASH 6.0 Homology search Homologous sequences based on Hidden Markov Models [23] antismash.secondarymetabolites.org
dbCAN2 [24] bcb.unl.edu/dbCAN2/
DETECT v2 Homologous sequences based on density profiles [26] github.com/ParkinsonLab/DETECT-v2
HEC-Net EC number prediction EC by sequence similarity and pattern recognition [32] hecnet.cbrlab.org/
Bio2Rxn EC by convolutional neural networks [33] design.rxnfinder.org/bio2rxn/
DEEPre EC by convolutional and recurrent neural networks [34] cbrc.kaust.edu.sa/DEEPre/
ECPred EC by ensemble of machine learning classifiers [35] ecpred.kansil.org/
DeepEC EC by three convolutional neural networks [36] bitbucket.org/kaistsystemsbiology/deepec
Enzyme Miner Novel enzyme search Structurally and functionally diversified proteins [37] loschmidt.chemi.muni.cz/enzymeminer/
SoluProt Solubility prediction Protein solubility based on sequence information [39] loschmidt.chemi.muni.cz/soluprot/
FireprotASR Ancestor

reconstruction
Reconstructed sequences of stable and robust ancestral proteins [46] loschmidt.chemi.muni.cz/fireprotasr/
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predicted multi-step reaction pathways in a tree-shaped graph and
provides transformed compounds and reference transformation
patterns in each predicted reaction. PathSearch computes similar
paths for a query reaction path using the RCLASS database for reac-
tion patterns matching to the query reactions. The results can be
mapped to KEGG pathway diagrams using the KEGG Mapper. Path-
Comp computes possible reaction paths between two compounds
using the binary relations of substrates and products in known
enzymatic reactions. The list of binary relations is generated from
the enzyme list that corresponds to the KEGG reference pathways.

Retro-path is an automated open-source workflow for retrosyn-
thesis based on generalized reaction rules that perform the ret-
rosynthesis search from chassis to target through an efficient and
well-controlled protocol [7]. Retrosynthesis approaches explore
the chemical biosynthetic space. The complexity associated with
the large combinatorial retrosynthesis design space is the main
challenge hindering this approach. Reaction rules used in retrosyn-
thesis require a solved atom–atom mapping between the atoms of
the substrates and those of the products to identify the reaction
center. The atom–atommapping problem is equivalent to the max-
imum common substructure problem. In some cases, avoiding
atom–atom mapping to generate rules is possible, as addressed
by the fingerprint subtraction. If encoding the reacting center is
necessary, it may not be sufficient to properly define a reaction cat-
alyzed by an enzyme since other atoms far from the reacting center
could also be involved in the ligand binding. In this case, the defi-
nition of the reacting center is extended to neighboring atoms,
either systematically at a predefined bond distance or based on
manual curation.

A challenge for the retrosynthesis algorithms is the need to han-
dle the processing of reactions of multiple substrates and multiple
products. This effort requires more computational resources for
modeling enzymatic promiscuity for each combination of promis-
cuous substrates. Retrosynthesis maps are subsequently con-
structed by iteratively applying reaction rules. Starting set of
compounds is repeatedly assessed until a map of hits is generated.
The application of this workflow can efficiently streamline ret-
rosynthesis pathway design, reshape the design, build, test, and
learn synthesis pipelines by driving the process towards an opti-
mized bioproduction. There are several other systems available
3

for the design of retro-pathways, e.g., METEOR [8], BNICE [9], Brid-
gIT [10] and others. Machine learning (ML)-based approaches use
Monte Carlo tree search and symbolic artificial intelligence (AI)
to discover retrosynthetic routes [11]. Encoder-decoder architec-
ture can also predict retrosynthetic pathways, consisting of two
recurrent neural networks [12].

Transform-MinER (Transform Molecules in Enzyme Reactions)
is an online computational tool that transforms query substrate
molecules into products by applying known enzyme reactions at
potential reaction centers and retrieves the most similar native
enzyme reactions for each [13]. The server can be used in two
modes. Molecule Search identifies potential enzyme transforma-
tions acting on a submitted query substrate. Path Search links sub-
mitted source and target molecules with enzyme transformations.
The data behind Transform-MinER was obtained from the KEGG
database [5]. Balanced Reaction files are generated for all reactions
with available molecular structures. Reaction centers are atoms
that change connectivity, neighbors, or stereochemistry. After per-
forming the atom–atommapping, these centers are identified from
the mapped balanced reaction files. Canonical SMiles ARbitrary
Target Specification SMARTS patterns are generated to represent
these reaction centers, enabling query molecules to be searched
for matching fragments. The results of Transform-MinER are pre-
sented to the user using two interactive views: the Path View
shows molecules as nodes and their transformations as edges,
and the Molecule View shows reaction centers as the interactive
shapes. The users can control the number of transformations pre-
sented using a similarity slider that varies the similarity threshold
between the submitted minimum similarity threshold and 1.0.
Similar enzyme reactions data table is populated by showing
matching native enzyme reactions and substrates in a descending
reaction center similarity when selecting a transformation. Hyper-
links take the user to the KEGG reaction and KEGG compound, with
the native KEGG compound structure in a hover-over box.

2.2. Sequence-based methods

In contrast to rule-based methods, sequence-based methods
harness the fast-paced growth of genomic databases as a publicly
available source for potential new biocatalysts. Strikingly, the ratio
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http://cbrc.kaust.edu.sa/DEEPre/
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Fig. 2. Illustration of the EnzymeMiner workflow. The server accepts multiple
target protein sequences as the input (orange). It can retrieve catalytic residues
from the Catalytic Site Atlas, or the user can define them (allowing for degenerated
positions). The mining (blue) starts with searching for homologs to query enzymes.
The obtained hits are subsequently filtered based on clustering and alignment,
ensuring the presence of the defined essential residues. Multiple annotations are
retrieved to enrich the information of the filtered list of hits. The final results
(yellow) are presented in two interactively integrated views: (i) the similarity
network view presents the sequences clustered according to their sequence
similarity, and (ii) the putative hits view allows for prioritization according to
any of the retrieved annotations. The web service is provided free of charge for non-
commercial use: https://loschmidt.chemi.muni.cz/enzymeminer/. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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of biochemically uncharacterized proteins is immense, as shown
by the fact that only one in 450 proteins recorded in the NCBI nr
database [14] is also present in the manually curated UniProtKB/
Swiss-Prot database [15]. Properly assembled full-length protein
sequences from metagenomic studies are also available in the
database MGnify [16]. By mining these databases, bioinformatics
approaches can significantly reduce the time and costs required
by the available high-throughput experimental methods to bio-
chemically characterize such gene expression products [17].
Metagenomic projects typically include bioinformatics pipelines
aimed to automatically identify the function of the isolated gene
products [18]. Such pipelines are based on the homology search
strategies, where the well-known BLAST tool [19,20] still plays a
major role in assessing sequence similarity: a sequence with unat-
tributed activity is likely to perform a similar function to that of the
most related sequence. Homology search was utilized for recent in
silico identification of potential therapeutic L-asparaginases from
hyperthermophilic organisms [21].

This rule of thumb has been extended for particular activities
through narrowing the homology search, using patterns such as
the hidden Markov model profiles (HMMs) [22]. Particularly anti-
SMASH 6.0, [23]) and dbCAN2, [24]) are popular tools relying on
this technology. They encode profiles for specific activities against
which genomic sequences can be scanned. Instances of specific
activities covered by such profiles may include, for example, fungal
functions such as bacteriocin, beta-lactam, or aminoglycoside
biosynthesis, and carbohydrate-active enzyme sub-families as rep-
resentatives of bacterial activities. Those profiles are built from sets
of human-curated, well-annotated protein alignments such as
those present in PFAM [25]. When an unannotated sequence from
a genomic project matches one of such function-related profiles,
the function encoded by the profile with a certain confidence prob-
ability can be assigned. DETECT v2 [26] explores the same concept,
but instead of exploiting HMMs, it builds density profiles from
homology alignments for each Enzyme Commission (EC) number.
Each density profile is labeled as positive if it includes only one
EC and negative otherwise. All the density profiles can be scanned
over the query sequence(s), and a confidence score on the assigned
EC number is derived from the ratio of positive and negative pro-
files. An earlier version of DETECT was used to detect novel enzy-
matic functions in Plasmodium falciparum [27].

Since the sequence space of genomic databases is vast, it is
usual to find a large number of targets from the initial homology
scan, especially if no dedicated profile was used to find the candi-
dates. In order to avoid nearly identical results among the hits
selected for further biochemical characterization, sequences are fil-
tered out from the results based on an identity percentage thresh-
old, which varies depending on the queried enzymatic activity. For
example, a 90% threshold was used to design a synthetic pathway
for 2-keto acid carbon chain elongation [28] and a 95% threshold
for the discovery of novel imine reductases [29]. The sequence sim-
ilarity measurements used for homology search can also be
employed to represent the sequence/function space employing
Sequence Similarity Networks [30]. They were pioneered by Bab-
bitt and colleagues [31] and have become useful guidance when
aiming to identify the most diverse candidates for further bio-
chemical characterization [29].

The homology strategy described above approaches the prob-
lem of function assigning from the perspective of pattern recogni-
tion: patterns in a sequence lead to a functional assignment.
Machine-learning approaches have since long contributed to the
field within this domain of pattern recognition. Recently, a deep-
learning tool named HEC-Net [32] has shown the ability to predict
the fourth level of the EC classification with striking accuracy (over
90%). The prediction exploits sequence similarity and pattern
recognition as well as individual amino-acid biochemical proper-
4

ties. Bio2Rxn [33] is another present-day tool for enzymatic activ-
ity inference that exploits convolutional neural networks and five
other more traditional homology- and biochemical feature-based
predictors. Moreover, Bio2Rxn offers a consensus annotation with
over 90% precision and recall close to 60%. Other notable tools in
this scope are DEEPre [34], ECPred [35], and DeepEC [36].

Opposite to the task of predicting the enzymatic activity from
sequence and more related to the applications of the rule-based
methods reviewed in the previous section is the exercise of com-
prehensively finding existing protein sequences that will execute
a desired enzymatic activity. EnzymeMiner [37] tackles this chal-
lenge by inferring a number of activity-related constraints of the
desired enzymatic function from its sequence inputs. The server
accepts multiple sequences annotated with the desired enzymatic
function as input, queries the Mechanism and Catalytic Site Atlas
[38] to elucidate their catalytic and essential residues (which can
also be given as input), and from them builds a protein sequence

https://loschmidt.chemi.muni.cz/enzymeminer/
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enriched by essential residue profiles. EnzymeMiner automatically
performs homology searches on a number of genomic-derived pro-
tein sequence databases using the protein sequence profile and fil-
ters out recovered hits that do not satisfy the derived essential
residue profile. Thus, EnzymeMiner identifies only sequences that
potentially carry out the desired enzymatic activity (Fig. 2). In
addition, it ranks the results by the predicted solubility of the
retrieved sequence (by SoluProt, [39]). It provides annotation on
the source organism, extremophilic nature, structure availability,
and other features such as sequence similarity networks visualiza-
tion to assist target selection.

The ancestral sequence reconstruction is a complementary
strategy for designing novel catalysts exploiting sequence similar-
ity relationships. The rationale behind inferring the sequence com-
position of ancient variants of modern-day proteins is that such
variants are often more thermostable [40] but may also exhibit
interesting catalytic properties [41,42]. The method has proven
successful in increasing the thermal stability of phenylalanine/ty-
rosine ammonia-lyase for complementary treatment of hereditary
tyrosinemia type I [43] or for doubling the activity of iduronate-2-
sulfatase for the treatment of Hunter syndrome [44]. The topic has
recently been reviewed elsewhere [45], but it is worth noting here
that the results obtained from EnzymeMiner can be used to feed
such reconstruction methods. One of the latest tools available for
ancestral sequence reconstruction is FireprotASR [46]. It represents
the first fully automated platform devoted to inferring the ances-
tral sequences of a given protein and achieves its goal by applying
a multiple sequence alignment and phylogenetic tree reconstruc-
tion. Beyond sequence-derived information, knowledge derived
from the three-dimensional structural arrangement of the target
enzymes can be used to improve their catalytic properties further,
as covered in the following section.
3. Rational design of highly active, stable, and soluble enzymes

3.1. Molecular modeling and bioinformatics

The applicability of any enzyme to a specific practical use
depends mostly on several global properties: the catalytic activity
and specificity towards a substrate or product, the solubility or
bioavailability, and its stability. Over the last few decades, protein
engineers have developed many methods and computational tools
to enhance these aspects according to particular needs. Such tools
have been recently reviewed [47–51]. Here we will focus only on
some of the most popular and promising tools available to non-
specialist users over user-friendly web servers.

ROSIE [52] is one of the web platforms for molecular modeling
with the widest scope of applications. Developed in 2013 and
updated recently, it hosts dozens of tools from the Rosetta family
under the same roof for modeling and designing proteins, nucleic
acids, and other biopolymers. In a uniform and user-friendly envi-
ronment, enzyme engineers can perform, for example, molecular
docking (Ligand Docking and others), predict and design stability
(Sequence Tolerance, RosettaVIP), and improve solubility (Super-
charge). It also allows the design of non-enzymatic proteins, such
as antibodies (RosettaAntibody). RosettaDesign is another Rosetta-
based software piece useful for enzyme design [53], also available
as a web server. This tool can be applied for de novo design, mod-
ification of larger secondary structure elements, or to add muta-
tions that can change the protein activity, specificity, or
flexibility. This method has also demonstrated the ability to stabi-
lize protein structures [54].

HotSpot Wizard 3.0 [55] is a web application for multiple anal-
yses of proteins that allows a versatile identification of hot spots
for mutagenesis. It can identify functional hot spots that may lead
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to improved catalytic function based on analyzing active sites,
enzyme tunnels, and molecular docking. Furthermore, it evaluates
correlated positions derived from the evolutionary analysis to pre-
vent potentially deleterious mutations. HotSpot Wizard also allows
the selection of hot spots for improving protein stability based on
the analysis of flexibility (according to the respective B-factors) or
by the back-to-consensus approach (phylogenetic analysis). The
suggested hot spots are ranked by the respective mutability scores
derived from a conservation analysis. The user can input either the
sequence or three-dimensional structure of the target enzyme. As a
result, the user can obtain an estimation of the effect of mutations
on protein function and the effect of selected mutations on the
enzyme stability, given by the changes in free energy. Effects on
function and stability, together with evolutional variability on each
position, enable the user to design optimal DNA codons to build
smart libraries for screening the selected positions. HotSpot
Wizard was used to identify mutable residues for improving flavin
reductase FRase I, which improves activation of the anticancer pro-
drug CB1954 [56].

When it comes to improving the activity or specificity of an
enzyme towards a substrate of interest, the most intuitive and
common strategy is to modify its catalytic site and its immediate
surroundings. FuncLib [57] was designed to modify the active site
of an enzyme and add non-deleterious multiple-point mutations
that will diversify the substrate specificity profiles while account-
ing for epistatic effects. It can also optimize the catalytic site
towards a substrate of interest and improve the respective cat-
alytic efficiency. It combines phylogenetic analysis and energy cal-
culations to propose several multiple-point designs ranked based
on the predicted stability. This tool was employed to improve pro-
tein yield and stability of an enzyme PodA, which has a therapeutic
potential of eliminating biofilms of human pathogen Pseudomonas
aeruginosa [58].

It is well-known that the modification of molecular tunnels can
strongly impact several properties of the enzymes, such as their
catalytic activity, substrate specificity, and stability to temperature
or co-solvents [59]. CaverWeb [60] is a web-based tool that can
calculate and analyze the access tunnels in enzymes and other pro-
teins. Such analysis may reveal important structural features (e.g.,
the tunnel bottlenecks) and help identify hot spots to be targeted
to improve the catalytic properties by ligand transport optimiza-
tion. From the CaverWeb interface, the CaverDock software [61]
can be also run to predict the trajectory of a small molecule (e.g.,
a substrate or a product) traveling through a given access tunnel
and compute its (un)binding energetic profile. This prediction
can reveal which ligands can (un)bind more easily to or from the
enzyme active site. Moreover, it can be used to compare different
enzymes (e.g., a wild-type and a mutant variant) and assess which
ones are more prone to bind a certain substrate of interest, and
hence predict the catalytic differences. Caver has recently been
used to facilitate the engineering of nicotine oxidase, which is used
for therapeutic enzymatic blockade of nicotine from the central
neural system [62].

Loops are structural features common to nearly all proteins that
are typically flexible. Often, they have a functional role, such as
substrate recognition. Frequently, they are the dynamic elements
that act as gateways to the active site and thus are important for
catalytic regulation, determining the activity and substrate speci-
ficity [63,64]. LoopGrafter [65] is a tool designed to optimize the
transplant of loops between two structurally related proteins. It
starts by predicting the dynamic properties of the proteins and
the correlations among the movements of different secondary
structure elements (Fig. 3), which helps the user to select the rele-
vant elements to be grafted. Next, it evaluates the geometric prop-
erties of the selected loops and proposes several solutions to find
the ideal insertion points. The tool also provides a three-



Fig. 3. Illustration of the LoopGrafter workflow. The server starts with the input of
the PDB files or codes of two structures (orange): (i) the loop receptor (scaffold) and
(ii) the loop donator (insert). The tool then calculates the secondary structures of all
the loops, assesses the protein flexibility using normal mode analysis, and performs
a superimposition of the two structures (blue). Once the user selects the loops of
interest, the loops are paired. The suitable loop boundaries are then explored based
on geometric restrictions so that maximal sequence diversity is probed in the
designed grafted variants. The possible solutions are collected as a list of sequences,
and the structures are then modeled and ranked by the respective stability scores
obtained from Rosetta and MODELLER (yellow). The web service is provided free of
charge for non-commercial use: https://loschmidt.chemi.muni.cz/loopgrafter/. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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dimensional model of the best resulting designs. The workflow has
been applied successfully to graft loops between two structurally
related (a/b hydrolase fold) but functionally very different
enzymes, resulting in the transfer of activity from one to another
[66]. The tool can potentially combine a highly efficient catalyst
with a stable or soluble protein to create a new biocatalyst that
is more suitable for practical applications.

The stability of proteins is an important factor for their applica-
bility as it determines whether they resist the conditions required
for their use (e.g., temperature, pH, co-solvents, etc.) without
unfolding or for how long they survive in storage before degrada-
tion. Protein Repair One-Stop-Shop (PROSS) [67] is an automated
web platform designed to improve protein thermostability and
functional yields. A phylogenetic analysis is performed to exclude
conserved positions or infrequent amino acids from the subse-
quent virtual mutagenesis screening. Rosetta [68] performs energy
calculations and scans which mutations are not deleterious. The
6

resulting substitutions are then combined to find the optimal
multiple-point mutations to increase stability. PROSS was success-
fully involved in increasing the thermal stability of many proteins,
including therapeutic enzymes [69]. Notably, for tyrosine phos-
phatase PTPN3 specifically dephosphorylating the epidermal
growth factor substrate 15 [70], the melting temperature was
increased up to 27 �C, while the activity was three times higher
compared to wild type [69].

FireProt [71] was developed to find proteins with improved
thermal stability. It is based on a hybrid method [72] combining
energy- and evolution-based approaches in a complex workflow.
In a fully automated process, FireProt integrates several tools and
smart intermediate filters sequentially applied to find stabilizing
single-point mutations. Individual mutations are eventually com-
bined to generate several multiple-point mutants to predict the
free energy stabilization and the mutant structures.

The term protein solubility comprises distinct biophysical or
biological aspects. These include (i) the intrinsic solubility in water
(which is a balance between the hydrophilic/hydrophobic charac-
ter), (ii) the aggregation propensity (which is related to the solvent
exposure of aggregation-prone regions), or even (iii) the express-
ibility (the soluble protein extract from the total proteins produced
from a specific expression system). Regardless of which of these
aspects is more limiting, low solubility is undesirable since it hin-
ders protein production and availability for practical applications.
Several computational tools are available to tackle this problem
and help design more soluble proteins, including SolubiS, Aggres-
can3D 2.0, and SoluProt (described in detail in Section 3.2, machine
learning).

SolubiS [73,74] is a web-based tool that aims to increase protein
solubility. The automated pipeline starts with identifying
aggregation-prone regions of the protein structure, followed by
predicting mutations that could reduce aggregation propensity. It
can differentiate between the buried and solvent-exposed regions,
as especially the solvent-exposed ones are critical for protein–pro-
tein aggregation. Free energy calculations guarantee that these
mutations do not impair the overall thermodynamic stability.
Intrinsic aggregation scores rank the different regions to help the
user prioritize their sequences. SolubiS was successfully applied
to reduce aggregation of human a-galactosidase, which is used in
replacement therapy for Fabry disease [75].

Aggrescan3D 2.0 [76] is another well-established aggregation
predictor that maps the intrinsic aggregation propensity on the
protein structure. It focuses its prediction on the protein surface,
taking into account the protein flexibility in its dynamic mode.
The predictor then suggests solubility-improving mutations for
the user to choose from. It models the structures of the mutants
and predicts their aggregation propensity and the energetic effect
of each mutation.

Recent advancement of machine-learning algorithms holds a
considerable potential for improvement of these web tools, as fur-
ther described in the following section.

3.2. Machine learning

Human cognitive abilities interpreting regularities in complex
data, such as those collected in laboratory experiments, are limited
to distinguishing patterns in 3–4 dimensional spaces at most. This
limitation hampers the possibility of learning higher-order depen-
dencies in the interpreted data. For instance, such higher-order
dependencies can be non-linear relationships between seemingly
unrelated variables or obscure evolutionary relationships between
distant amino acids in a polypeptide chain. This lack of depth in
understanding natural and experimental data might, in turn, limit
the capacities of understanding what makes enzymes suitable bio-
catalysts and thus restrain our potential for engineering them.

https://loschmidt.chemi.muni.cz/loopgrafter/


Fig. 4. Illustration of the machine learning workflow. Machine learning (ML) enables the discovery of hidden patterns in abundant biological data. Top: Abundant data may
be collected from laboratory experiments or drawn from public databases. Left: Data features should be engineered to be used within a machine learning pipeline. Typically,
the dimensionality is reduced by feature extraction. These features shall be suitably encoded to be correctly understood by the machine learning model. Right: A machine
learning model is trained on the data until it achieves desired accuracy. The candidate model is then statistically evaluated on test data before its use in a real environment.
Bottom: The final model is applied for useful structural- and functional-properties prediction of therapeutic enzymes.
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Machine learning (ML) is a field in computer science devoted to
creating learning models whose parameters are set automatically
by training on input data, allowing these models to find patterns
in such data with automated computational methods. Compared
to human-driven data interpretation, ML allows finding compli-
cated patterns consisting of multiple properties. ML methods rep-
resent soft computing methods as they naturally work with
probabilities or imprecise values. These two considerations make
ML suitable to study biology phenomena, which can be rarely
explained both simply and precisely at the same time. We use
the terms ML and AI interchangeably for this review as their meth-
ods overlap substantially.

ML workflows consist of several fundamental steps (Fig. 4). The
data collection and treatment are crucial as the learning model that
would be inferred can only be as good as the input data. The data
collection is often the most time-consuming step as well. Since raw
data may be too complex to be fed into an ML model directly, a set
of features is commonly engineered from such data to reduce data
dimensionality and avoid learning trivial rules between correlated
properties. The aim of such features is to statistically represent the
information encompassed in a whole set of data with a smaller
amount of data. However, to speed up the learning, feature engi-
neering can also introduce prior knowledge as these features can
incorporate biological meaning (e.g., electrostatic charges of amino
acids or any other biologically relevant property) rather than just
statistical meaning. The computational time required in the learn-
ing phase is directly related to the complexity of the model repre-
sented by the number of parameters to be trained. In recent years,
particularly complex ML systems, called deep neural networks or
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deep learning models, have been gaining popularity due to the
high predictive power they can achieve. These intricate models
can have billions of parameters, requiring long training times and
making them prone to overfitting the training data, e.g., learning
the distributions in the data perfectly and thus losing the ability
to generalize [77]. However, once the model is trained, it can often
predict new data almost instantly.

One of the most prominent success stories of implementing the
ML workflow in biology is the recently published tool AlphaFold2
[78,79]. This deep learning tool was developed by DeepMind Tech-
nologies to solve one of the most challenging problems in biology:
predicting protein structure from its sequence. AlphaFold won the
two last Critical Assessments of protein Structure Prediction (CASP)
– a biannual competition of the state-of-the-art predictors of pro-
tein 3D structure from an amino-acid sequence [80]. Its first
appearance in the competition already brought the authors a win
in the category of proteins that have no homologs with known
structures. Two years later, AlphaFold2 dramatically increased its
margin and approached the accuracy of experimental methods
such as X-ray crystallography. The success would not be possible
without almost two hundred thousand structures available in
databases at that time. This breakthrough manifests the strength
of ML when both big data and sufficient computational power
are available. Heartened by these results, Alphabet, the parent
company of DeepMind, established an Isomorphic Labs subsidiary
in 2021, a venture focused on drug discovery with an AI-first
approach [81]. Alphabet is not the first company to employ ML
in the pharmaceutical sector. More than 40 established pharma
companies are known to be employing ML methods [82], and over
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230 start-ups use AI for drug discovery or development of products
related to drugs or medicine [83].

Apart from structure prediction, ML can assist scientists with
the design of enzymes by suggesting mutations in the existing
enzymes to improve desired properties, such as stability, solubility,
activity, specificity, and others. Such ML tools are focused on pre-
dicting the mutational effects on a property (how the mutation
causes variation in the property) rather than the absolute value
of the property. In addition, due to the breakthrough that Alpha-
Fold represented in predicting protein structure, the use of ML
tools devoted to predicting the effects of de novo designed drugs
will soon increase. Finally, an important aspect that AlphaFold
may bypass is the input type requirements for a particular ML tool
to be used. While some predictors are built for sequence-only
input, many others require three-dimensional structural data,
and AlphaFold might help to bridge this gap for proteins whose
structure has not been resolved experimentally yet.

As the available mutational data on protein stability is relatively
abundant, multiple ML models to predict this property were
recently reviewed by Marabotti et al. [84]. Two of the most recent
ML models, DeepDDG [85] and DynaMut2 [86], represent different
ML approaches – deep learning and random forest models, respec-
tively. Both were trained on thousands of mutants to directly pre-
dict a Gibbs free energy (DDG) change upon introducing a
mutation and are available as web tools. DeepDDG uses many fea-
tures for each mutated position or for each pair of mutated posi-
tions and their neighboring amino acids. Such features include
the amino-acid type, accessible surface area, or structural motifs.
DynaMut2 uses features computed by normal mode analysis,
graph-based signatures, or residue contacts for the training, which
resulted in a more stable performance than its predecessors.

Protein solubility is a more complex phenomenon, especially in
terms of its definition and quantification, and thus it has been a
much lesser attractive target for ML predictive models. Neverthe-
less, this direction is also actively explored. One of the most recent
predictors based on wild-type sequential data is SoluProt [39],
available as a stand-alone program or as a web tool. It achieves bet-
ter results than its predecessors and facilitates the prioritization of
candidate sequences to increase the success rate of high-
throughput experiments. The tool uses such features (including
predicted ones) as the amino-acid content of the sequence, physic-
ochemical properties, average flexibility, secondary structure con-
tent, and average disorder. SoluProt predicts the probability of a
soluble protein expression in E. coli and simultaneously reflects
the solubility and expressibility of the target proteins.

The extension of models trained on non-mutational data to pre-
dict the effect of mutations on protein solubility is challenging
since the distances between wild-type sequences are typically
much larger than those implied by mutations. And due to the lack
of databases of mutational data on solubility, only a few simple ML
models have been created to tackle this problem. The first such
model was OptSolMut [87], trained on as few as 137 protein
mutants. The authors brought the lack of mutational data for this
problem to the community’s attention in their work and manually
collected the first dataset. In contrast, the authors of the most
recent predictor PON-Sol2 [88] managed to collect a list of thou-
sands of mutants on which to train their model. This shift in the
magnitude of data availability can be attributed to the yield of
high-throughput experiments in recent years. PON-Sol2 predicts
three classes of solubility change (increased, decreased, not chan-
ged) but works as a pair of two stacked 2-class predictors. The first
one predicts a decrease/non-decrease, and if the first prediction
was non-decrease, the second decides between the remaining
two choices (increased or not changed).

Apart from stability and solubility, several other enzyme prop-
erties became targets of ML analyses. EPSVR [89] is a web tool for
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predicting B-cell antigenic epitopes on a structure using support
vector machines based on defining surface patches. Surface
patches are scored according to the number of predicted epitope
residues, and the best scoring ones are subsequently used to select
the final predicted epitope residues. Features of epitope patches
were learned on unbound structures of just 48 antibody-antigen
complexes. EPSVR and other epitopes predictors may speed up
and refine the discovery and development in epitope-based vac-
cine design. An in-silico study demonstrated the use of these pre-
dictors to find epitopes in SARS-CoV-2 [90]. NNTox [91] is a neural
network to predict toxic proteins and their mode of toxicity. It was
trained on Gene Ontology annotations of thousands of UniProt pro-
teins, including or excluding the ‘‘toxin” keyword. Accordingly,
protein toxicity is predicted given Gene Ontology terms. DeepBL
[92] is a web tool based on deep learning of beta-lactamase iden-
tification and classification from a sequence and thus could help
design its inhibitors. The tool was trained on beta-lactamase and
random non-beta-lactamase sequences stored in the NCBI RefSeq
database. The features are counts of all possible amino-acid pairs
that appear in the input sequence at the sequential distance from
0 to 5.

The ML applications, as mentioned above, would not be possible
without abundant data for the targets of interest. The more data is
available, the more sophisticated models can be employed, and
more complex patterns may be found accordingly. Another impor-
tant criterion of source data is quality. When inaccurate or incor-
rect data is fed to a model, the model will likely learn inaccurate
patterns. If not treated carefully, disbalances or underpopulated
classes in data can project such biases to the final predictions.

Mutational and wild-type data availability for protein stability
and solubility was reviewed by Musil et al. [49]. Two different
databases were established to track various protein properties
based on this work: FireProtDB [93] and SoluProtMutDB [94].
These are manually curated databases of stability and solubility
changes, respectively. Both currently store experimental results
in multiple thousands and follow the FAIR principles (Findable,
Accessible, Interoperable and Reusable).

Another example of the importance of well-structured and
curated data is the recent mutational database D3DistalMutation
[95] that tracks the effects of mutations upon the enzymatic activ-
ity, comprising about a thousand entries. These differential protein
databases store quantitative or qualitative effects of specific muta-
tions on a property of interest in proteins. Apart from the selected
differential databases, there are new databases of absolute values,
such as MPTherm [96], storing thermodynamic data of membrane
proteins.

The number of proteins with available mutational data is far
behind the number of 3D structures available in the Protein Data
Bank (PDB). The latter amounts to less than 1% of the known pro-
tein sequences. Also, the majority of the data in PDB are deposited
by academia. This was demonstrated in an analysis of the struc-
tural biology contribution to new molecular entities (NMEs) devel-
opment, where 4 of 5 relevant structures were uploaded by
academia [97]. Alongside this, the private sector usually excludes
structural biology insights from IP and patent filings for high-
profile targets like antibodies or cancer therapeutics. Thus, the
emerging high-throughput experimental techniques still hold
great promise in unlocking the further potential of models to pre-
dict mutational effects. Furthermore, two classes of critical data are
yet entirely missing: (i) data encompassing the mutational effect of
insertions and deletions and (ii) data about the concomitant effect
of mutational changes in two or more properties at the same time.
The latter is especially relevant to addressing the multi-target pre-
diction, i.e., the improvement of several properties at once. A trade-
off between properties is often observed [41,98,99], e.g., antibody
affinity versus stability or activity versus solubility. The task of
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improving one target property without compromising the other is
yet to be addressed in ML-aided design. In the following section,
we cover the state of the art of experimental techniques that show
considerable promise in generating the data necessary for address-
ing this task.
4. High-throughput enzyme screening

4.1. Starting a screening campaign

Enzyme screening resembles an adventurous journey through
the immensely vast landscape of protein sequences [100] with
the goal to find a treasure - enzymes with desired functional prop-
erties. In its actual biochemical meaning, however, screening
requires laborious and costly experimental testing of the starting
pool of enzymes. The size of this pool, which is feasible to be
screened by the ultra-high throughput methods [101], reaches mil-
lions to billions of enzyme variants for directed evolution or
metagenomic enzyme discovery campaigns. Nevertheless, this
number is still only a drop in the ocean of the protein sequence
space. Particularly, protein engineers aiming to use directed evolu-
tion need a good starting point – an enzyme to evolve [102]. These
starting points can be provided by enzyme discovery or rational
design studies (Sections 2 and 3). However, the hits from these
studies can vary from tens to thousands of enzyme variants, so a
high-throughput method to screen them is worth considering.

With any starting pool of enzymes, the screening procedure
needs careful planning. Therefore, this section provides the key
aspects to consider when starting a screening campaign. Any
enzyme screening campaign involves the following general steps:
(i) generation of a gene library encoding enzymes of interest; (ii)
expression of the genes within the library; (iii) functional screen-
ing and selection of hits (requiring suitable screening technology
and detection assay) and (iv) retrieving of the genotype-
phenotype linkage by DNA sequencing. In the following subsec-
tions, we focus on (ii) and (iii), as these are the key variables for
designing a screening campaign (Fig. 5). The required starting pool
of enzymes, i.e., the library generation can vary tremendously with
respect to the type of study. Therefore, we refer the readers to the
recent reviews regarding directed evolution libraries [103] and
metagenomic enzyme discoveries [104].
4.2. Suitable screening platforms

4.2.1. Throughput of screening technologies
Various enzyme screening technologies are available (Fig. 5,

middle top). In order to select the most suitable one for a particular
screening campaign, the key parameters to be considered are the
throughput and the technology availability. One of the most com-
mon screening technologies is the microtiter plate format, where
individual variants are compartmentalized in separate wells. Thus,
this method provides a simple and robust link between genotype
and phenotype. Conventional microtiter plate readers offer the
throughput of hundreds to thousands of variants per day. This
number can be elevated further by miniaturization to 1536-well
formats or microcapillaries [105] and robotization (liquid handling
robots) to reach thousands to hundreds of thousand variants per
day [101]. Millions of variants can be screened when moving from
solid support to fluids. Widely available flow cytometers enable
the throughput of up to hundreds of millions of variants per day
by conducting fluorescence-activated cell sorting (FACS) [106] or
more recent image-activated cell sorting [107]. FACS has been suc-
cessfully employed to evolve arginine deiminase for stronger inhi-
bition of tumour growth [108] or more recently to engineer
phenylalanine ammonia-lyase used to treat phenylketonuria [109].
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A comparable throughput of up to billions of variants per day has
been achieved by microfluidic droplet-sorting systems, combining
the versatility of traditional microtiter plate screening with the high
throughput achieved by FACS [101]. The ultra-high-throughput nat-
ure of droplet sorting devices makes microfluidics a cutting-edge
technology, which has already been demonstrated on every class
of enzymes [110], including therapeutic enzymes. For example, tis-
sue plasminogen activator mutants have been screened by a
microfluidic fluorescence-activated droplet sorting (FADS) coupled
with a retroviral display, resulting in greater than 1300-fold enrich-
ment of the active wild-type enzyme [111]. When microfluidic sor-
ters are coupled with next-generation sequencing, complex
sequence-functional relationships can be revealed in deep muta-
tional scanning (DMS) studies [112,113]. A recent example of phar-
maceutically relevant microfluidic DMS has been demonstrated on
dissecting the structural, functional and regulatory differences of
the executioner caspases CASP3 and CASP7, which are involved in
cell death and inflammation responses [114].

All screening campaigns ultimately aim for the maximum possi-
ble throughput to make this process both sample- and time-
efficient. In this context, ultra-high-throughput microfluidic sorters
are becoming one of the most promising techniques. However, a
trade-off can be observed between the highest possible throughput
offered and the simplicity of operation [115]. Therefore, the challenge
for microfluidic engineers lies in leveraging the microfluidic sorting
technology to a standard commercially available laboratory proce-
dure, and the first operational solutions are already approaching
the market [116]. With respect to the potential of droplet microflu-
idic systems acknowledged by the scientific community, the follow-
ing paragraphs focus on microfluidic enzyme screening platforms.

4.2.2. Expression systems
The selection of a suitable expression system for the production

of the enzymes (encoded in the starting library) depends mostly on
the detection assay (Fig. 5, middle left). The screening campaign is
much more affordable if the enzyme purification step can be
avoided and whole cells or cell extracts can be employed [117]. If
the substrate can easily diffuse into the cell (which is often the case
of fluorogenic substrates), the screening can be carried out in the
whole-cell mode and is suitable for microfluidic FACS [118]. When
the substrate can be tethered to the cell surface, a display system
can be applied, as demonstrated on bacteria [119] or yeast [120].
However, for most microfluidic screening campaigns, cells need
to be lysed prior to assaying [121]. Efficient lysis can be done elec-
trically [122], enzymatically [121], or by heating [123]. The selec-
tion of a suitable substrate remains critical for lysate-based
screening, as compatibility with the native proteins and cellular
metabolites of the expression host needs to be considered [117].

To eliminate the challenge of varying cellular transformation
efficiency, in vitro transcription and translation directly provide
the biosynthesis of proteins of interest from their encoding genes
[124]. Cell-free protein expression is an attractive way to produce
recombinant enzymes, especially when the enzyme is toxic to the
host cell or unnatural amino acids are introduced [110]. The poten-
tial of this approach was recently demonstrated by a droplet-based
in vitro evolution study [125], improving the protease Savinase
(toxic to E. coli) to a 5-fold faster enzyme.

4.2.3. Assay and detection modes
Every enzyme screening needs a sensitive detection of the reac-

tion product (Fig. 5, middle right). Droplet sorters most commonly
employ optical detection methods [110]. There is a need to employ
either a fluorogenic or a chromogenic substrate. Otherwise, the
enzymatic activity needs to be monitored by a coupled assay with
a photometric readout [101]. Fluorescence detection is widely
applied in FADS [126]. Absorbance detection [127] substantially



Fig. 5. Illustration of high-throughput screening of enzymes. Top: The library of genes encoding enzymes of interest can be generated from studies of both natural and
engineered enzymes. More specifically, this starting pool of enzymes comes from studies such as metagenomic and in-silico discovery (natural enzymes) or rational design
and directed evolution (engineered enzymes). Middle: The three panels guide the selection of suitable screening technology (green), expression system (red), and detection
mode (blue). Each panel contains several options to choose from and parameters to evaluate their properties. Each parameter is described in the bottom left of each panel. The
parameter score is depicted as a ‘‘slider” going from left to right (low to high, respectively). Bottom: The screening campaign results in enzyme variants, which require further
characterization – see Fig. 6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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extends the range of assays suitable for high-throughput screening.
To reach a label-free detection mode, droplet microfluidic sorters
have been successfully connected with the surface-enhanced
Raman scattering [128], mass spectrometry [129], or electrochem-
ical detection [130]. However, not all of these newly explored
detection methods have been applied in an actual screening cam-
paign [110].
4.3. Screening hits

When the link between genotype and phenotype is maintained,
the result of the screening campaign is a set of genes encoding
10
enzymes with desired or improved properties. Out of millions of
variants in the libraries, the ‘‘hit” enzymes can be sorted without
a precise understanding of how they work (i.e., without knowing
the precise reaction mechanism). However, for the subsequent uti-
lization of the hit biocatalysts, they first need to be biochemically
characterized.
5. High-throughput characterization and validation of enzyme
hits

The thorough biochemical characterization of the identified hits
of a screening campaign is often the rate-limiting step, especially



Fig. 6. Illustration of high-throughput characterization of enzymes. The hits from experimental or in silico screening need to be biochemically characterized. The three panels
in the middle guide the selection of suitable characterization technologies (green) for structural (teal) and functional characterization (purple). Characterization technologies
are described by parameters to evaluate their properties. Each parameter is described on the bottom left of each panel. The parameter score is depicted as a ‘‘slider” going
from left to right (low to high, respectively). Both structural and functional panels highlight the key characteristics to be obtained for a target enzyme. In the bottom part of
each characteristic, the applicability of each technique from the technology panel is depicted. DM = droplet microfluidics, MC = microcapillaries, MP = microtiter plates. One
plus means potential applicability of the technique; two pluses denote the proof-of-concept studies using these techniques and three pluses stand for systematic application
of the technique. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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when conventional biochemical technologies are used as they are
low-throughput and time- and sample-demanding [131]. Similar
to screening, new high-throughput experimental techniques are
being developed to accelerate the biochemical characterization
by miniaturization and automation [132]. The applications of
microscale and microfluidic technologies for structural and func-
tional characterization of enzymes (Fig. 6) are herein reviewed in
the following two sections.
5.1. Structural stability characterization

Solubility and stability of the discovered or engineered enzymes
are two crucial properties. Maintaining them ensures the protein
product quality and guarantees the safety of therapeutic enzymes
[133]. The critical structural characteristics to be investigated in a
high-throughput manner are the enzyme solubility, stability and
11
folding associated with secondary structure, as well as its quater-
nary structure or oligomerization state. High-throughput tech-
niques to characterize protein solubility mainly depend on
reporter-based assays, such as split-green fluorescence protein
[134] or NanoLuc [135]. These can be fully integrated with micro-
titer plate formats, while recent coupling with DMS studies offers
significantly higher throughput [136].

High-throughput technologies for enzyme stability characteri-
zation have been standardized to commercially available instru-
ments, with the prominent example of capillary nano-DSF [137].
These technologies, combining intrinsic fluorescence measurement
with static and dynamic light scattering, provide valuable informa-
tion on thermal or chemical denaturation, ligand binding affinity,
reaction buffer optimization, or protein aggregation [131]. Nano-
DSF was utilized to characterise phenylalanine/tyrosine ammonia
lyases obtained via ancestral sequence reconstruction [44], while
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other therapeutic proteins were also characterized by this tech-
nique [138]. Some of the other benchmark techniques, including
differential scanning calorimetry [139] and circular dichroism
[140], have been recently adapted to higher throughput by minia-
turization and microfluidics. These efforts are valuable, especially
for circular dichroism, which is routinely performed to check
proper enzyme folding and evaluate its secondary structure.
Small-angle X-ray scattering (SAXS) is one of the methods to pro-
vide quaternary structure information and was also recently
adapted to 96-well plate samplers [141] and microfluidic chips
[142].

5.2. Functional characterization

Despite its benefits of time and sample efficiency, microfluidic
systems have been surprisingly scarcely employed for the system-
atic kinetic characterization of enzymes [143]. To our best knowl-
edge, microfluidic kinetic characterization of any therapeutic
enzyme was demonstrated only by Baret et al. [119]. The authors
tested bacterial expression systems and measured steady-state
kinetics of L-asparaginase used as drugs in treating acute child-
hood lymphoblastic leukaemia. A significant step towards system-
atic functional characterization of enzymes was recently made by
introducing a microfluidic platform named High-Throughput
Microfluidic Enzyme Kinetics (HT-MEK) [144]. HT-MEK provides
unprecedented capacities in the systematic kinetic and thermody-
namic characterization of over a thousand enzyme mutants in par-
allel. By simultaneous in vitro expression and purification, more
than 1500 mutants of a phosphate esterase PafA were subjected
to multiple quantitative assays in days. For each mutant, the
steady-state kinetic parameters, namely the rate constant (kcat),
Michaelis constant (Km), and specificity constant (kcat/Km), were
obtained for multiple substrates. Moreover, the inhibition con-
stants (Ki) and the effects on folding were determined from over
670,000 reactions in total.

The team behind HT-MEK suggests that their device can be
adapted to any enzyme system that can be tagged with a fluores-
cent protein (to monitor enzyme expression), expressed in vitro,
and has a direct or coupled fluorogenic assay [144]. In particular,
HT-MEK is applicable to detect inorganic phosphate (Pi), a com-
pound readily soluble in water. However, many classes of enzymes
perform valuable reactions on rather hydrophobic substrates,
which are generally less suitable for droplet microfluidic systems
due to their leakage to oil [145]. The challenge with the delivery
of hydrophobic compounds into microfluidic droplets was recently
addressed, where oil–water partitioning and microdialysis were
utilized to deliver halogenated compounds for haloalkane dehalo-
genases within a microfluidic platform [146]. This concept enables
the high-throughput characterization of dehalogenase activity,
substrate specificity, temperature optima, and thermodynamics.
This platform was systematically applied to characterize tens of
dehalogenases within several different studies, including engi-
neered variants [66,147] and enzymes discovered by in silico anal-
ysis [148].

Although steady-state analysis provides valuable initial infor-
mation on the enzymatic reaction, the parameters obtained from
such simplified models do not contain important mechanical
understanding. However, the advanced transient kinetics provid-
ing such valuable information is extremely time-consuming and
material-intensive. This demand has been recently addressed by
a study featuring a droplet microfluidic platform, which was
applied to assess the transient kinetics of three model enzymes
in high throughput, namely b-galactosidase, horseradish peroxi-
dase, and microperoxidase [149]. It was also used in a complex
kinetic and thermodynamic study of engineered variants of
haloalkane dehalogenases – all this in the throughput of 9000 reac-
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tions/min and with the reaction volumes reduced by as much as six
orders of magnitude compared to conventional techniques.

Microfluidic enzyme characterization platforms have recently
demonstrated their potential to meet the demands of the genomic
era for the high-throughput collection of quantitative structural
and functional characteristics of enzymes [132]. Similar to the
prediction of enzyme structures via machine-learning-based
AlphaFold2 [79], the functional data obtained by high-throughput
microfluidic methods can facilitate progress in the long-term
ambition of enzyme function prediction [132].
6. Conclusions and perspectives

Genomic and metagenomic databases serve as an ever-
expanding supply of unexplored protein-encoding sequences. This
natural diversity is a valuable source of potential new therapeutic
enzymes. Alternatively, man-made diversity can be explored via
protein engineering strategies, mainly by rational design and direc-
ted evolution. Structural bioinformatic methods enable efficient
exploration of both of these sources of potential biocatalysts.

The accessibility of these computational methods used to be
limited to specialized teams. Nowadays, web tools provide access
to state-of-the-art bioinformatic methods without the need for
tedious and time-consuming installations or special computational
skills. Another advantage is that the server developers typically
optimize parameters of individual computational tools and the
end-users do not have to study every individual parameter to
obtain meaningful results. Web tools are therefore appropriate
for both experienced users and non-experts in the field.

The output of these bioinformatic methods is usually a pool of
interesting enzyme-encoding genes, either promising newly dis-
covered enzyme variants or suggested mutants to improve
selected enzyme properties. Similarly, libraries of enzyme-
encoding genes can be obtained from directed evolution or
metagenomic studies. Microfluidics and FACS can efficiently screen
these libraries and thus narrow down the number of potential
therapeutic enzymes to the most promising candidates.

These hits from screening campaigns need to be further bio-
chemically characterized to ensure their sufficient stability, solu-
bility, and activity for biomedical applications. Microfluidics and
deep mutational scanning are being increasingly utilized for the
systematic characterization of various key enzyme properties. Fur-
thermore, these high-throughput technologies can collect a desir-
able amount of high-quality data to feed machine learning
algorithms.

We expect that machine learning algorithms will be further
incorporated in both sequence- and structure-based bioinformat-
ics. The prominent example of machine-learning achievements in
this domain is the accurate prediction of tertiary protein structures
by AlphaFold2. Thanks to tackling this long-term challenge in life
sciences, models of many proteins potentially relevant as biophar-
maceuticals have been predicted and deposited to the AlphaFold
Protein Structure Database. The structures available in this steadily
growing database represent an attractive source of information for
further analysis.

In the coming years, new algorithms and computational work-
flows should be developed to assign a specific function and biolog-
ical activity based on structural information. Such progress would
move us closer to reaching another long-term challenge: the pre-
diction of enzyme function from its sequence. Overall, the syner-
gistic development of both advanced computational and high-
throughput experimental methods will lead to higher chances of
identification and characterization of valuable therapeutic
enzymes.



M. Vasina, J. Velecký, J. Planas-Iglesias et al. Advanced Drug Delivery Reviews 183 (2022) 114143
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to express their gratitude to the Czech
Ministry of Education (INBIO - CZ.02.1.01/0.0/0.0/16_026/000845
1, RECETOX research infrastructure no. LM2018121, ESFRI ELIXIR
- LM2018131), and Czech Science Foundation (no. 20-15915Y)
for financial support. This work has received funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 857560. This publication
reflects only the authors’ view and the European Commission is
not responsible for any use that may be made of the information
it contains. Michal Vasina acknowledges the financial support of
his doctoral study by the scholarship Brno Ph.D. Talent and from
Operational Programme Research, Development and Education-
project ‘‘Internal Grant Agency of Masaryk University” (No.CZ.02.
2.69/0.0/0.0/19_073/0016943).

References

[1] S. Tandon, A. Sharma, S. Singh, S. Sharma, S.J. Sarma, Therapeutic enzymes:
discoveries, production and applications, J. Drug Deliv. Sci. Technol. 63 (2021)
102455, https://doi.org/10.1016/j.jddst.2021.102455.

[2] S. Bansal, K.S. Sangha, P. Khatri, Drug treatment of acute ischemic stroke, Am.
J. Cardiovasc. Drugs Drugs Devices Interv. 13 (1) (2013) 57–69, https://doi.
org/10.1007/s40256-013-0007-6.

[3] N. Labrou (Ed.), Therapeutic Enzymes: Function and Clinical Implications,
Springer Singapore, Singapore, 2019. https://doi.org/10.1007/978-981-13-
7709-9.

[4] N. Dellas, J. Liu, R.C. Botham, G.W. Huisman, Adapting protein sequences for
optimized therapeutic efficacy, Curr. Opin. Chem. Biol. 64 (2021) 38–47,
https://doi.org/10.1016/j.cbpa.2021.03.005.

[5] M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, M. Tanabe, KEGG as a
reference resource for gene and protein annotation, Nucleic Acids Res. 44 (D1)
(2016) D457–D462, https://doi.org/10.1093/nar/gkv1070.

[6] Y. Moriya, D. Shigemizu, M. Hattori, T. Tokimatsu, M. Kotera, S. Goto, M.
Kanehisa, PathPred: an enzyme-catalyzed metabolic pathway prediction
server, Nucleic Acids Res. 38 (Web Server) (2010) W138–W143, https://doi.
org/10.1093/nar/gkq318.

[7] B. Delépine, T. Duigou, P. Carbonell, J.-L. Faulon, RetroPath2.0: A
retrosynthesis workflow for metabolic engineers, Metab. Eng. 45 (2018)
158–170, https://doi.org/10.1016/j.ymben.2017.12.002.

[8] C.A. Marchant, K.A. Briggs, A. Long, In silico tools for sharing data and
knowledge on toxicity and metabolism: derek for windows, meteor, and vitic,
Toxicol. Mech. Methods. 18 (2-3) (2008) 177–187, https://doi.org/10.1080/
15376510701857320.

[9] N. Hadadi, J. Hafner, A. Shajkofci, A. Zisaki, V. Hatzimanikatis, ATLAS of
biochemistry: a repository of all possible biochemical reactions for synthetic
biology and metabolic engineering studies, ACS Synth. Biol. 5 (10) (2016)
1155–1166, https://doi.org/10.1021/acssynbio.6b00054.

[10] N. Hadadi, H. MohammadiPeyhani, L. Miskovic, M. Seijo, V. Hatzimanikatis,
Enzyme annotation for orphan and novel reactions using knowledge of
substrate reactive sites, Proc. Natl. Acad. Sci. 116 (15) (2019) 7298–7307,
https://doi.org/10.1073/pnas.1818877116.

[11] M.H.S. Segler, M. Preuss, M.P. Waller, Planning chemical syntheses with deep
neural networks and symbolic AI, Nature 555 (7698) (2018) 604–610, https://
doi.org/10.1038/nature25978.

[12] B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. Luu Nguyen, S. Ho, J.
Sloane, P. Wender, V. Pande, Retrosynthetic reaction prediction using neural
sequence-to-sequence models, ACS Cent Sci. 3 (2017) 1103–1113, https://doi.
org/10.1021/acscentsci.7b00303.

[13] J.D. Tyzack, A.J.M. Ribeiro, N. Borkakoti, J.M. Thornton, Transform-MinER:
transforming molecules in enzyme reactions, Bioinformatics 34 (2018) 3597–
3599, https://doi.org/10.1093/bioinformatics/bty394.

[14] E.W. Sayers, E.E. Bolton, J.R. Brister, K. Canese, J. Chan, D.C. Comeau, R. Connor,
K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki, S. Lathrop,
Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenko, T. Tse, J. Wang, R.
Williams, B.W. Trawick, K.D. Pruitt, S.T. Sherry, Database resources of the
national center for biotechnology information, Nucleic Acids Res. (2021)
gkab1112, https://doi.org/10.1093/nar/gkab1112.

[15] The UniProt Consortium, UniProt: a worldwide hub of protein knowledge,
Nucleic Acids Res. 47 (2019) D506–D515, https://doi.org/10.1093/nar/
gky1049.
13
[16] A.L. Mitchell, A. Almeida, M. Beracochea, M. Boland, J. Burgin, G. Cochrane, M.
R. Crusoe, V. Kale, S.C. Potter, L.J. Richardson, E. Sakharova, M. Scheremetjew,
A. Korobeynikov, A. Shlemov, O. Kunyavskaya, A. Lapidus, R.D. Finn, MGnify:
the microbiome analysis resource in 2020, Nucleic Acids Res. (2019), https://
doi.org/10.1093/nar/gkz1035.

[17] P. Vanacek, E. Sebestova, P. Babkova, S. Bidmanova, L. Daniel, P. Dvorak, V.
Stepankova, R. Chaloupkova, J. Brezovsky, Z. Prokop, J. Damborsky,
Exploration of enzyme diversity by integrating bioinformatics with
expression analysis and biochemical characterization, ACS Catal. 8 (3)
(2018) 2402–2412, https://doi.org/10.1021/acscatal.7b03523.

[18] F.A. Prayogo, A. Budiharjo, H.P. Kusumaningrum, W. Wijanarka, A. Suprihadi,
N. Nurhayati, Metagenomic applications in exploration and development of
novel enzymes from nature: a review, J. Genet. Eng. Biotechnol. 18 (2020) 39,
https://doi.org/10.1186/s43141-020-00043-9.

[19] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local
alignment search tool, J. Mol. Biol. 215 (3) (1990) 403–410, https://doi.org/
10.1016/S0022-2836(05)80360-2.

[20] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T.L.
Madden, BLAST+: architecture and applications, BMC Bioinf. 10 (2009) 421,
https://doi.org/10.1186/1471-2105-10-421.

[21] M. Sajed, Sabeel un Naeem, N. Rashid, Chapter 13 - l-Asparaginases from
hyperthermophilic archaea and their applications, in: M. Kuddus (Ed.),
Microb. Extrem., Academic Press, 2022, pp. 177–184. https://doi.org/10.
1016/B978-0-12-822945-3.00022-1.

[22] J. Mistry, R.D. Finn, S.R. Eddy, A. Bateman, M. Punta, Challenges in homology
search: HMMER3 and convergent evolution of coiled-coil regions, Nucleic
Acids Res. 41 (2013) e121–e121, https://doi.org/10.1093/nar/gkt263.

[23] K. Blin, S. Shaw, A.M. Kloosterman, Z. Charlop-Powers, G.P. van Wezel, M.H.
Medema, T. Weber, antiSMASH 6.0: improving cluster detection and
comparison capabilities, Nucleic Acids Res. 49 (2021) W29–W35, https://
doi.org/10.1093/nar/gkab335.

[24] H. Zhang, T. Yohe, L. Huang, S. Entwistle, P. Wu, Z. Yang, P.K. Busk, Y. Xu, Y.
Yin, dbCAN2: a meta server for automated carbohydrate-active enzyme
annotation, Nucleic Acids Res. 46 (2018) W95–W101, https://doi.org/
10.1093/nar/gky418.

[25] J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, E.L.L.
Sonnhammer, S.C.E. Tosatto, L. Paladin, S. Raj, L.J. Richardson, R.D. Finn, A.
Bateman, Pfam: The protein families database in 2021, Nucleic Acids Res. 49
(2021) D412–D419, https://doi.org/10.1093/nar/gkaa913.

[26] N. Nursimulu, L.L. Xu, J.D. Wasmuth, I. Krukov, J. Parkinson, Improved enzyme
annotation with EC-specific cutoffs using DETECT v2, Bioinformatics 34
(2018) 3393–3395, https://doi.org/10.1093/bioinformatics/bty368.

[27] S.S. Hung, J. Wasmuth, C. Sanford, J. Parkinson, DETECT—a Density estimation
tool for enzyme classification and its application to plasmodium falciparum,
Bioinformatics 26 (2010) 1690–1698, https://doi.org/10.1093/bioinformatics/
btq266.

[28] W.S. Mak, S. Tran, R. Marcheschi, S. Bertolani, J. Thompson, D. Baker, J.C. Liao,
J.B. Siegel, Integrative genomic mining for enzyme function to enable
engineering of a non-natural biosynthetic pathway, Nat. Commun. 6 (1)
(2015), https://doi.org/10.1038/ncomms10005.

[29] J.R. Marshall, P. Yao, S.L. Montgomery, J.D. Finnigan, T.W. Thorpe, R.B. Palmer,
J. Mangas-Sanchez, R.A.M. Duncan, R.S. Heath, K.M. Graham, D.J. Cook, S.J.
Charnock, N.J. Turner, Screening and characterization of a diverse panel of
metagenomic imine reductases for biocatalytic reductive amination, Nat.
Chem. 13 (2) (2021) 140–148, https://doi.org/10.1038/s41557-020-00606-w.

[30] J.N. Copp, E. Akiva, P.C. Babbitt, N. Tokuriki, Revealing unexplored sequence-
function space using sequence similarity networks, Biochemistry 57 (31)
(2018) 4651–4662, https://doi.org/10.1021/acs.biochem.8b00473.

[31] H.J. Atkinson, J.H. Morris, T.E. Ferrin, P.C. Babbitt, I.K. Jordan, Using sequence
similarity networks for visualization of relationships across diverse protein
superfamilies, PLoS ONE 4 (2) (2009) e4345, https://doi.org/10.1371/journal.
pone.0004345.

[32] S.A. Memon, K.A. Khan, H. Naveed, HECNet: a hierarchical approach to
enzyme function classification using a Siamese Triplet Network,
Bioinformatics 36 (2020) 4583–4589, https://doi.org/10.1093/
bioinformatics/btaa536.

[33] T. Zhang, Y. Tian, L. Yuan, F. Chen, A. Ren, Q.-N. Hu, Bio2Rxn: sequence-based
enzymatic reaction predictions by a consensus strategy, Bioinformatics 36
(2020) 3600–3601, https://doi.org/10.1093/bioinformatics/btaa135.

[34] Y. Li, S. Wang, R. Umarov, B. Xie, M. Fan, L. Li, X. Gao, DEEPre: sequence-based
enzyme EC number prediction by deep learning, Bioinformatics 34 (2018)
760–769, https://doi.org/10.1093/bioinformatics/btx680.

[35] A. Dalkiran, A.S. Rifaioglu, M.J. Martin, R. Cetin-Atalay, V. Atalay, T. Doğan,
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