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Abstract
Motivation: Protein tunnels and channels are key transport pathways that allow ligands to pass 
between proteins' external and internal environments. These functionally important structural features 
warrant detailed attention. It is difficult to study the ligand binding and unbinding process 
experimentally, while molecular dynamics simulations can be time-consuming and computationally 
demanding.
Results: CaverDock is a new software tool for analysing the ligand passage through the biomolecules. 
The method uses the optimised docking algorithm of AutoDock Vina for ligand placement docking and 
implements a parallel heuristic algorithm to search the space of possible trajectories. The duration of 
the simulations takes from minutes to a few hours. Here we describe the implementation of the method 
and demonstrate CaverDock’s usability by: i) comparison of the results with other available tools, ii) 
determination of the robustness with large ensembles of ligands and iii) the analysis and comparison 
of the ligand trajectories in engineered tunnels. Thorough testing confirms that CaverDock is applicable 
for the fast analysis of ligand binding and unbinding in fundamental enzymology and protein 
engineering.
Availability: User guide and binaries for Ubuntu are freely available for non-commercial use at 
https://loschmidt.chemi.muni.cz/caverdock/. The web implementation is available at 
https://loschmidt.chemi.muni.cz/caverweb/. The source code is available on request.
Contact: jiri@chemi.muni.cz
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Proteins are macromolecules that have myriads of functions in cells and 
uses in the chemical, biotechnological and pharmaceutical industries 

(Koeller and Wong, 2001; Clouthier and Pelletier, 2012). Majority of 
enzymes have their active site buried inside their core connected with the 
external environment by access tunnels. Protein tunnels are characterized 
by a single opening. They enable the transport of substrates, products, 
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solvent, and ions in and out of the active site (Brezovsky et al., 2013; Gora 
et al., 2013). Tunnels are essential for the natural function of enzymes, 
affecting their substrate specificity, stability and activity (Gora et al., 
2013). The shape and physicochemical properties of the tunnels may also 
protect proteins' hydrophobic core by restricting access of solvent 
molecules and inhibitors. Protein channels are characterized by two 
openings. They are often connecting different cellular environments and 
play an essential role in the transport of various ligands, solvent molecules 
and ions. Rational modification of protein tunnels and channels is an 
important paradigm in protein engineering (Damborsky and Brezovsky, 
2009). Tunnel- or channel-lining residues directly interact with the passing 
ligands and therefore represent hot-spots for the optimization of various 
enzymatic properties (Bendl et al., 2016).

The process of ligand transport cannot be studied easily by experimental 
techniques at the molecular level. Characterization of the transport 
processes is usually carried out indirectly by evaluation of enzymatic 
activity by steady-state or transient kinetics (Biedermannova et al., 2012; 
Hu et al., 2016). Experimental methods offering a direct molecular 
description of the access pathways, like crystallography under xenon 
pressure (Tilton et al., 1984; Milani et al., 2005) or time-resolved protein 
crystallography (Schotte et al., 2003) are still very demanding and can 
only be applied to a narrow spectrum of proteins. Therefore, 
computational approaches provide an important insight into the molecular 
transport. Many of these methods involve perturbed molecular dynamics 
(MD) simulations (Arroyo-Mañez et al., 2011) and other enhanced 
sampling methods (Rydzewski and Nowak, 2017). Methods such as 
Protein Energy Landscape Exploration (Borrelli et al., 2005), Binding 
Free Energy Landscape (Bai et al., 2013) or IterTunnel (Kingsley and Lill, 
2014) were developed to simplify the setup and assessment of MD-based 
simulations. Nevertheless, MD-based methods are still difficult to use for 
interactive analyses, comparative studies or virtual screening campaigns 
due to the long simulation times and high numbers of repetitions required. 

To analyse the ligand unbinding more rapidly, without the need for such 
computationally-demanding MD methods, two alternative tools have been 
previously developed. SLITHER (Lee et al., 2009) uses an iterative 
docking scheme to generate protein-ligand complexes and calculates 
corresponding binding free energies. This tool focuses on the study of 
ligands passing through channels inside a protein. The computational core 
of this method is molecular docking using AUTODOCK or MEDock 
(Chang et al., 2005; Morris et al., 2009). MoMA-LigPath (Devaurs et al., 
2013) uses a steric representation of molecules and a robotic Manhattan-
like RRT algorithm (Cortes et al., 2007) to explore the conformational 
space, but does not evaluate the free energy of the system. Therefore, an 
external method must be applied to quantify energy changes that occur 
during protein-ligand interactions along the tunnel. Here we present a 
novel method for simulating ligand binding and unbinding, implemented 
in the software tool CaverDock. The software is based on the step-wise 
movement of the ligand along the pre-calculated tunnel. CaverDock uses 
the docking algorithm of AutoDock Vina (Trott and Olson, 2010) enriched 
by the restraints, which serve to: (i) hold a selected atom of a ligand at a 
specific disc located along the tunnel or channel, i.e., position restraint; 
and (ii) dock the ligand in the upper-bound vicinity of a previous ligand 
conformation in order to maintain continuous ligand movement along the 
tunnel, i.e., pattern restraint.

  

2 Methods

2.1 CaverDock
In this section, we introduce the basic principles of CaverDock 
computation. A more thorough methodology is described in detail in SI-
1. The complete mathematical and algorithmic description of the method, 
which is beyond the scope of this study, is described in (Filipovic et al., 
2019). The method is based on the step-wise movement of the ligand along 
the tunnel.  The tunnel geometry, approximated by a sequence of spheres, 
is used as an input. This sequence of spheres can be obtained from tools 
providing the PDB file of the tunnel represented by spheres, such as 
CAVER 3.02 (Chovancova et al., 2012), for whose output file format the 
CaverDock was optimised. The sequence of spheres is then discretized 
into a sequence of discs (cross-section slices of a maximal thickness set 
by the user).

Firstly, the selected ligand’s atom is positioned at the disc by a position 
restraint. Secondly, CaverDock minimizes the ligand conformation and 
evaluates its binding free energy by using the scoring function from 
AutoDock Vina (Trott and Olson, 2010). Thirdly, the ligand trajectory is 
produced by aggregating the docked poses of the ligand from each 
consecutive disc. Such a trajectory samples the tunnel thoroughly, but the 
movement of the ligand may be non-continuous. This non-continuous 
(lower-bound) trajectory is used to estimate the lower-bound (lowest) 
energy profile of the ligand`s transport through the tunnel. The actual 
energy may be higher since the non-continuous movement can avoid small 
bottlenecks by rapid changes in the orientation or the conformation of the 
ligand. 

Finally, the pattern constraint is used to compute the continuous (upper-
bound) trajectory. In each step, the ligand is docked in the vicinity of its 
previous position allowing only small changes in the ligand conformation. 
The number of possible continuous trajectories grows exponentially with 
the number of discs, because each transition to a new disc may lead to 
changes in the ligand’s position, orientation, and conformation. Therefore, 
a heuristic method is employed to search for a continuous trajectory. When 
the binding free energy of a given docked conformation is significantly 
higher than the binding free energy of the conformation obtained from the 
lower-bound trajectory, backtracking is turned on. The ligand 
conformation is changed (e.g. to a conformation explored when lower-
bound trajectory was computed) and the ligand is moved successively 
backward to previous discs. The backtracking ends when the forward and 
backward trajectories converge, or it is stopped if the starting disc is 
reached. As there is no guarantee that the resulting continuous trajectory 
is optimal, we call it the upper-bound trajectory as the actual energy may 
be lower than the computed energy.

The practical differences between lower-bound and upper-bound 
trajectories are the following: The lower-bound trajectory is able to 
completely sample the ligand trajectory. The information from the lower-
bound is sufficient for comparison purposes but its main limitation is that 
it can miss small bottlenecks by rapid changes of the ligand orientation. 
However, the sudden changes in orientation could potentially mimic the 
natural flexibility of the protein and lower the unnatural energy barriers 
caused by receptor rigidity during the binding or unbinding. On the other 
hand, the upper-bound trajectory is completely smooth. However, it can 
create unrealistic conformations in very tight parts of the tunnel, which are 
signified by sudden very high peaks of the binding energy in the energy 
profile. The energy profile from lower-bound shows the best-case scenario 
of binding energy for each disc of the tunnel while the upper-bound can 
report exaggerated energies because the resulting upper-bound trajectory 
may not be optimal. 
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2.2 Input preparation
With one exception (for Dataset III, described below), all the simulations 
described in this manuscript were performed using the following settings: 
the PDB files of the proteins were obtained from the RCSB Protein Data 
Bank (Berman et al., 2000). MOL2 files of the ligands were either 
downloaded from the ZINC database (Irwin and Shoichet, 2005) or built 
in Avogadro (Hanwell et al., 2012) and minimized with the MMFF94 
force-field (Halgren, 1996). The receptor and ligand PDBQT files were 
prepared using scripts from MGLtools (Morris et al., 2009) with default 
parameters. The tunnel calculation was performed by CAVER 3.02 
(Chovancova et al., 2012), with the size of the probe set to 0.7 Å, and other 
parameters at default values. The tunnels were discretized with 0.3 Å steps 
and extended by 2 Å in the direction of the vector calculated from the last 
two spheres in the original tunnel. The script for the tunnel extension is 
provided in the CaverDock package. The configuration files and 
calculation of the grid-box containing the whole tunnel geometry were 
prepared by the provided preparation script. The drag atom, i.e., the atom 
attracted to the middle of the disc at the beginning of each calculation step, 
was chosen using the default auto-selection (the closest atom to the 
centroid of the molecule). All the simulations were performed in the 
default (unbinding) direction. To simulate the binding process, the user 
has to invert the discretized tunnel file, e.g., using the bash command tac. 
Side chain flexibility of selected residues can be prepared using 
MGLtools. Detailed information about the CaverDock setup is provided 
in the manual available at https://loschmidt.chemi.muni.cz/caverdock/. 

2.3 Testing datasets
All datasets (SI-20) together with the figures of the ligand´s geometries 
(SI-19) are provided as the Supplementary data.

2.3.1 Dataset I: Benchmarking

CaverDock was compared with the two existing tools for prediction of the 
ligand migration SLITHER (Lee et al., 2009)  and MoMA-LigPath 
(Devaurs et al., 2013). These tools were compared using 10 cases. The 
dataset consists of  6 example cases presented at the websites of SLITHER 
and MoMA-LigPath, complemented with other systems found in the 
literature (Wang et al., 2005; Peräkylä, 2009; Koudelakova et al., 2011; 
Cui et al., 2015) (SI-2). SLITHER and MoMA-LigPath are available as 
web servers. The current version of CaverDock is standalone for local 
calculations. SLITHER calculations were conducted with the 
AUTODOCK algorithm and the default rigid receptor. MoMA-LigPath 
was used with the default settings. The side-chains are treated as flexible 
by default only in the case of MoMA-LigPath. CaverDock was used with 
a rigid receptor and the calculations were set up in the same manner as 
described in the Input preparation section. 

2.3.2 Dataset II: Geometry of tunnels 

This dataset was used to test the ability of CaverDock to model ligand 
trajectories through tunnels with a broad range of geometries. The data for 
proteins and their corresponding tunnels were collected from the literature 
(Chovancova et al., 2012; Koudelakova et al., 2013). Information about 
the proteins’ native substrates was obtained from the UniProt 
(Consortium, 2017) and BRENDA databases (Schomburg et al., 2004). 
The complete dataset consists of 26 proteins with 113 identified tunnels 
and 33 natural substrates, creating altogether 136 cases (SI-3). 

2.3.3 Dataset III: Geometry of substrates 

The correspondence between the binding energies from CaverDock and 
experimentally measured kinetics data was validated using this dataset. 
The haloalkane dehalogenase LinB (PDB ID: 1K63) and the set of 25 

Fig. 1. Illustration of the results obtained using the CaverDock. Top left: Examples of the energy profiles for the haloalkane dehalogenase LinB (PDB ID: 1K63) and 2,3-dichloropropan-1-
ol. The binding energy (left vertical axis) of a smoothed continuous upper-bound trajectory, the lower-bound trajectory and tunnel radius (right vertical axis) are indicated by the full line, 
dashed line, and dotted line, respectively. The direction of the trajectory in the plot is from the active site (marked by the star symbol) to the surface of the protein. Bottom left: The three-
dimensional surface of the corresponding tunnel calculated by CAVER 3.02, is shown below the energy plot. Right: Visualization of a part of a CaverDock trajectory. The protein is displayed 
as the cyan cartoon with the tunnel shown as the grey transparent surface. Selected snapshots of the ligand are shown in ball-and-stick representation: 1 (green), 10 (blue), 45 (red), 60 
(orange) and 85 (yellow). The snapshot 45 (red) corresponds to the binding energy maximum of the energy profile.
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halogenated substrates with experimentally determined KM values 
(Kmunícek et al., 2005) were used (SI-4). To ensure the complete 
unbinding of each ligand, we used specific settings to calculate the tunnels 
in CAVER 3.02, with the shell radius and shell depth set to 20 and 4 Å, 
respectively. We selected the tunnels corresponding to the p1 and p2 
tunnels of the LinB dehalogenase and extended them by 20 Å.

2.3.4 Dataset IV: Tunnel engineering

This dataset was assembled to test the ability of CaverDock to describe 
the differences in enzymes with rationally engineered access tunnels (SI-
5). We analysed the wild-type dehalogenase LinBWT (PDB ID: 1K63), 
the variant LinB32 (PDB ID: 4WDQ; LinB-closedW) with closed main p1 
tunnel and the variant LinB86 (PDB ID: 5LKA) with newly open p3 
tunnel (LinB-openW). The goal was to compare the energy profiles from 
CaverDock (i) with the tunnels detected in the crystal structures and (ii) 
the frequency of product (2-bromoethan-1-ol) release through p1 and p3 
tunnels obtained in previously published MD simulations (Brezovsky et 
al., 2016). 

3 Results

3.1 Illustration of CaverDock output
CaverDock generates an output in the form of two PDBQT files. One file 
provides a smoothed upper-bound trajectory while the other represents the 
lower-bound movement of the ligand. Information about the binding 
energies and tunnel radii is listed in the REMARK lines of the respective 
ligand trajectories (Fig. 1), and can be extracted and plotted using the 
scripts provided with the package. The visualisation of the results obtained 
using the CaverDock is presented in Fig. 1.

3.2 Comparison of CaverDock with state-of-the-art 
methods SLITHER and MoMA-LigPath

We studied the predictive power of SLITHER, MoMA-LigPath, and 
CaverDock using the Dataset I (Table 1). SLITHER was able to predict 
the unbinding trajectory for half of the tested systems. Its main limitation 
is that the ligands are moved in a direction perpendicular to the y-axis 
only, making the analysis of curved and narrow tunnels difficult. 

Moreover, the ligand trajectories calculated by the SLITHER are 
discontinuous with significant gaps between the predicted ligand 
positions. MoMA-LigPath was more successful, providing a continuous 
trajectory for six of the ten test cases, but the tool does not provide any 
energy information. CaverDock was the most robust and provided results 
for all ten test cases. 

A critical comparison of the features of individual tools revealed, that 
the main advantage of CaverDock over SLITHER is its ability to calculate 
the ligand transition in any direction with a simple setup (SI-6). The 
resolution of CaverDock trajectories is much higher since the ligand has 
to move through each disc of the discretized tunnel or channel so there are 
no large gaps in the trajectory. On the other hand, CaverDock currently 
cannot analyse multiple protein conformations simultaneously as it is 
possible with the relaxed receptor mode of SLITHER. The main 

difference between the CaverDock and the MoMA-LigPath are that 

Fig. 2. Schematic energy profile with marked energy values. EBound – the binding 
energy of a ligand located inside the active site; EMax – the highest binding energy in 
the trajectory; ESurface – the binding energy of the ligand located at the protein surface; 
Ea – the activation energy of association for the products (EMax - EBound) and for the 
reactants (EMax - ESurface), corresponds to the kinetics of a ligand passing through the 
tunnel; ΔEBS – difference of the binding energies in the bound state and at the surface, 
corresponds to the enthalpy of binding.

Table 1: Comparative study of CaverDock, SLITHER, and MoMA-LigPath 

PDB Enzyme Ligand
Ligand passage

CaverDock SLITHER MOMA-LigPath

1BN7 Haloalkane dehalogenase 1-Chlorobutane YES YES YES

1MAH Acetylcholinesterase Acetylcholine YES YES YES

2A65 Leucine transporter Leucine YES YES YES

1PV7 Lactose permease Lactose YES YES YES

1SUK Glucose transporter α-D-Glucopyranose YES YES NO

1TCC Lipase B 4-Methyloctanoic acid YES NO YES

1ZNJ Insulin hexamer Phenol YES NO YES

1RC2 Aquaporin Z Glycerol YES NO NO

1IE9 Vitamin D receptor 1,25-Dihydroxyvitamin D3 YES NO NO

3LC4 Cytochrome P450 2E1 Arachidonic acid YES NO NO

YES and NO describes the result of the qualitative test whether the tool was able to predict a ligand’s trajectory.
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CaverDock is able to simulate also the binding trajectory of a ligand and 
gives the information about the binding energy along the pathway. The 
advantage of MoMA-LigPath is that it can treat the flexibility of many 
side-chains simultaneously, while implementation of side-chain flexibility 
is still rather limited in CaverDock and SLITHER. Finally, CaverDock is 
the only software, which is provided as a web application as well as a 
standalone tool, making it suitable for extensive virtual screening 
campaigns. The features and the setup options of the tested tools are 
summarised in SI-6.

3.3 Impact of tunnel geometries on CaverDock calculations
Dataset II was constructed to test the predictive power of CaverDock with 
proteins possessing various geometries of tunnels with their native 
substrates. CaverDock was tested using 26 proteins with 33 substrates 
(some proteins had more than one native substrate) and 113 tunnels, 136 
calculations altogether. Out of 136 CaverDock runs, 81 finished with 
lower-bound and upper-bound trajectory, 44 finished only with lower-
bound and in 11 cases the ligands were not able to pass through the tunnels 
(SI-7). 

Although a smoothed (upper-bound) trajectory was not calculated for 
almost half of the cases, this does not mean that CaverDock could not 
properly simulate ligand unbinding. The ligand unbinding process was 
still sufficiently sampled along the whole tunnel in the lower-bound 
trajectory, although the transfer from one conformation to the next was 
not smooth. This assertion is corroborated by the manifestation of 
increases in energy caused by the tunnel bottlenecks in the lower-bound 
energy profiles alone. Therefore, providing data relating to the lower-
bound trajectory alone is a valid result. Further analysis of the 11 cases in 
which the ligands could not pass through the tunnels in CaverDock 
simulations revealed that the failure was due to the tunnels being too 
narrow for the ligands. In all except one case, these tunnels were graded 
by CAVER 3.02 as being ‘lower throughput’, meaning they are apparently 
less important than others for transport and thus unlikely to be functionally 

relevant for transport of the respective ligands. Plots of the energy profiles 
can be found in SI-8.

3.4 Validation of CaverDock calculations against 
experimental data

CaverDock was used to analyse the p1 and p2 tunnels of the haloalkane 
dehalogenase LinB with the set of halogenated substrates from Dataset III, 
for which the values of Michaelis constants have been determined 
experimentally in our laboratory (Kmunícek et al., 2005). The impact of 
the ligand and tunnel geometry on the energy profiles was studied. 
Selected energy values (Fig. 2) were extracted from the energy profiles: 
(i) the energy minimum close to the start of the trajectory corresponding 
to the ligand bound into the active site (EBound), (ii) the maximum energy 
from the profile (EMax) and (iii) the last minimum related with the surface-
bound ligand (ESurface). For the analysis of substrates, the main focus was 
devoted to the evaluation of the height of the activation energy of 
association (Ea) calculated for the ligands going through the tunnel into 
the active site. Therefore, the activation energy of association was 
calculated as Ea = EMax - ESurface. Ea can be related to the binding kinetics 
by the Arrhenius law ( ), and thus Ea is expected to vary linearly 𝑘 = 𝐴𝑒 ―

𝐸𝑎
𝑅𝑇

with the logarithm of the association rate, kon. The energy difference 
between the active site and the surface-bound energy (EBS) was 
calculated as the difference between the corresponding minima. EBS 
quantifies the enthalpy of binding, which is according to the van’t Hoff 
equation, negatively linearly correlated with the logarithm of the 
equilibrium constants of the binding/unbinding processes. Even though 
CaverDock provided the smoothed trajectories for all the test cases, we 
analysed the binding energies from the lower-bound trajectories, which 
provide more reasonable profiles.

Comparison of Ea values for the two tunnels (Fig. 3) indicates that the 
energy barriers for the ligand passage through the p2 tunnel are typically 
two times higher than the corresponding barriers for the p1 tunnel (SI-9 
and SI-10). This is likely due to the fact that p2 is narrower, longer and 
more curved than p1 (SI-11). These results suggest the preference of the 

Fig. 3. Comparison of the activation energy of association Ea for the p1 and p2 tunnels of the haloalkane dehalogenase LinB with the set of 25 substrates.
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substrates for binding into the buried active site of that protein using the 
p1 tunnel, which is the main tunnel observed in the crystal structures. 
Without exception, the energy minima of the bound states were lower than 
the surface-bound minima, showing the tendency of all substrates to bind 
into the active site cavity rather than any other part of the tunnel or surface.

We calculated the correlations between the analysed energy values and 
the experimentally measured Michaelis constants (KM) and catalytic 
constants (kcat). With crude approximation, KM values should be related to 
the binding affinity, and it may be expected to correlate with EBS. The 
interpretation of KM in various systems is complex as it is composed of 
multiple steps in the enzymatic reaction, and not only composed of the 
binding process. Pearson’s correlation coefficient of log(KM) with EBS 
showed the values of 0.6 and 0.7 for the p1 and p2 tunnel, respectively. 
This statistically significant correlation shows that CaverDock can 
describe the binding trajectory and find a proper binding mode. The level 
of the observed correlation is in agreement with the nature of Michaelis 
constant for the haloalkane dehalogenase LinB, which is defined by a 
combination of the substrate binding and the rate of the follow-up SN2 
reaction step resulting in the covalently bound intermediate (Prokop et al., 
2003). 

Regarding kcat, this kinetic parameter is limited by the slowest step in 
the catalytic cycle. In the haloalkane dehalogenases, this cycle is rather 
complex, and the rate-limiting step can easily vary from substrate to a 
substrate (Prokop et al., 2003). Therefore, kcat is expected to correlate with 
the Ea barriers only in the systems where the binding of a substrate or 
unbinding of a product is the rate-limiting step of the catalysis. Pearson’s 
correlation coefficient of kcat and Ea is -0.2 for both p1 and p2 tunnels. 
These statistically insignificant correlations are in agreement with the 
transient kinetic analysis of the haloalkane dehalogenase LinB (Prokop et 
al., 2003), demonstrating that the substrate binding is not the rate-limiting 
step in the catalytic cycle. The linear regressions of these correlations are 
provided in SI-12.

3.5 Analysis of proteins with computationally designed 
access tunnels

We used CaverDock to analyse Dataset IV, the unbinding of the 2-
bromoethan-1-ol product from three different LinB variants. The lower-
bound energy profiles for the p1 and the p3 tunnels in LinB wild type 
(LinBWT) and two variants carrying tunnel mutations LinB32 (LinB-
closedW) and LinB86 (LinB-openW) are shown in Fig. 4. The results from 
CaverDock calculation correspond well with the properties of the tunnels 
found in the crystal structures, supporting the blockage of the main p1 
tunnel by the bulky Trp residue, intentionally introduced to the LinB32 
and LinB86 variants (Brezovsky et al., 2016). The narrowing down of the 
p1 tunnel by this engineering step resulted in increased energy barrier for 
the transport of the 2-bromoethan-1-ol from the active site to protein 
surface (Fig. 4A). The follow-up step of the project was opening de novo 
p3 tunnel in the protein LinB86. Calculation of the energy barriers for the 
release of 2-bromoethan-1-ol by this route clearly illustrates removal of 
the first barrier and significant lowering of the second barrier of the 
energetic profile (Fig. 4B), which is again in a perfect agreement with 
crystallographic data. The calculated energy barriers are matching the 
diameters of p1 and p3 tunnels calculated in each of the experimental 
structures of LinBWT, LinB32 and LinB86 (SI-14), suggesting that 
CaverDock calculations can recapitulate tunnel engineering exercises and 
has a great potential for computational protein design targeting protein 
tunnels and channels. 

4 Discussion
Tunnels and channels facilitate the transport of ligands through diverse 
proteins, so understanding the processes underlying the ligand transport is 
a cornerstone of biochemistry, structural biology and medicinal chemistry. 
The characteristics of these transport pathways are difficult to study using 
the currently available experimental techniques, which are not trivial to 
set up and time-consuming (Schotte et al., 2003; Mittermaier and 
Meneses, 2013). Moreover, it can be difficult to study them with the 
currently available computational tools, as they typically involve the use 
of MD simulations (Grubmüller et al., 1996; Lüdemann et al., 2000; 
Barducci et al., 2010), which require substantial knowledge of the 
methods and extensive computational resources for screening of large 
numbers of ligands.

These limitations let us develop CaverDock, a fast computational tool 
based on molecular docking for simulating ligand transition through 
protein tunnels and channels. CaverDock can be used to infer whether the 
studied ligand will likely pass through a particular protein tunnel. It can 
evaluate the passage of different ligands, or semi-quantitatively compare 

Fig. 4. Analysis of 2-bromoethan-1-ol unbinding through p1 (A) and p3 (B) tunnels in 
the LinB variants with rationally engineered tunnels (Brezovsky et al., 2016). The p1 
tunnel is blocked by a bulky Trp residue in LinB32 and LinB86, resulting in an increase in 
the energy barrier. The p3 tunnel was opened in LinB86 by three point mutations, resulting 
in removal of the first barrier and lowering the second barrier.
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the difficulty of ligands passing through several different tunnels. The 
method is very easy to setup with the calculation times typically in the 
order of minutes. This makes it suitable for virtual screening purposes or 
for the enrichment of widely used virtual screening results by molecular 
docking (Daniel et al., 2015). In comparison with MD simulations, 
CaverDock does not require extensive knowledge of the studied system. 
CaverDock is able to sample the binding energy throughout the whole 
protein tunnel and to identify unfavourable binding interactions, which 
can then be optimized by site-directed mutagenesis (Liskova et al., 2017; 
Kaushik et al., 2018). Such places would be missed by traditional docking 
techniques. The easy setup and execution of the calculations provide 
trajectories of a ligand passage through a protein of interest, which can be 
used as educational materials in the biochemistry courses, assisting 
teachers with visualisation of the process of ligand binding or unbinding. 
Finally, the advanced settings in CaverDock also enable constrained and 
pattern docking calculations.

The comparison presented here showed that, when aiming at exploring 
the properties of the ligand transport through molecular tunnels, 
CaverDock displayed better performance than the other tested tools 
SLITHER (Lee et al., 2009) and MoMA-LigPath (Devaurs et al., 2013). 
We thoroughly tested CaverDock using 69 ligands, 130 tunnel geometries 
and 40 protein structures. In most cases the ligands successfully passed 
through tunnels. In some cases, the steric hindrances prevented the 
calculation of a smoothed (upper-bound) continuous ligand trajectory. 
However, in these cases CaverDock was still able to calculate the non-
continuous lower-bound trajectory. Further analysis of the lower-bound 
energy profiles showed, that they reflect the increases in the energy 
associated with the ligands' passage through a more restricted and narrow 
spaces in a tunnel. Thus, the lower-bound trajectory alone is suitable for 
sampling all the binding energies through a tunnel. CaverDock's ability to 
calculate smoothed upper-bound trajectories could potentially be 
improved by choosing a drag atom close to the edge of the ligand rather 
than the default atom closest to its centroid (especially for large ligands 
with high degrees of freedom). Another problem that may occur is that the 
energy at the end of the simulation (at the tunnel mouth) sometimes did 
not converge to zero. This implies that the ligand did not reach a fully 
unbound state. To ensure further unbinding of the ligand, the tunnel 
geometry obtained from CAVER may be prolonged or recalculated with 
different settings.

The most important limitation of the first version of CaverDock is that 
it cannot robustly address conformational dynamics of the protein 
structure. We have analysed the current implementation of flexibility of 
the sidechains (Trott and Olson, 2010) in CaverDock (SI-16). The 
application of flexibility brought an overall lowering of the energy profile 
but at the same time it produced unlikely high-energy conformations of 
the protein structure in some instances. Moreover, the introduction of 
multiple side-chain flexibility significantly increased the calculation time. 
For now, we advise users to use the current implementation of sidechain 
flexibility cautiously and take practical measures such as minimising the 
number of flexible sidechains and checking the generated protein 
conformations for steric clashes. We also looked at the importance of 
protein dynamics and the impact of backbone dynamics (SI-17). Using the 
snapshots from previously published accelerated molecular dynamics 
simulations, we have observed expected changes in the CaverDock energy 
profiles calculated with the structures of proteins possessing different 
conformations. These structures represent highly valuable benchmark for 
the rigorous treatment of protein flexibility, which is currently under 
development. The most important part in the development will be to 

balance the trade-off between the systematic description of protein 
conformations and the speed of CaverDock calculations.
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