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Abstract—Here we present a novel method for the analysis of transport processes in proteins and its implementation called

CaverDock. Our method is based on a modified molecular docking algorithm. It iteratively places the ligand along the access tunnel in

such a way that the ligand movement is contiguous and the energy is minimized. The result of CaverDock calculation is a ligand

trajectory and an energy profile of transport process. CaverDock uses the modified docking program Autodock Vina for molecular

docking and implements a parallel heuristic algorithm for searching the space of possible trajectories. Our method lies in between the

geometrical approaches and molecular dynamics simulations. Contrary to the geometrical methods, it provides an evaluation of

chemical forces. However, it is far less computationally demanding and easier to set up compared to molecular dynamics simulations.

CaverDock will find a broad use in the fields of computational enzymology, drug design and protein engineering. The software is

available free of charge to the academic users at https://loschmidt.chemi.muni.cz/caverdock/.

Index Terms—molecular docking, tunnel analysis, ligand transport, drug design, numerical optimization, restrained force field, volume

discretization

✦

1 INTRODUCTION

Understanding protein-ligand interactions is of great impor-
tance in many fundamental biochemical processes as well as
in various applications. For example, to study a ligand that
may inhibit protein function allowing a virus to attack a cell
or to design inhibitors blocking tunnels and channels as a
new paradigm in drug design [1]. The ligand interacts with
protein in its active or binding site – the functional site of a
protein. Simulation of ligand binding (entering the active
site and forming a stable complex) and unbinding (release
of a ligand from a stable complex) helps in many practical
applications. It allows to search for ligands which are more
likely to bind to a particular protein; modify a ligand to bind
faster or with higher affinity or modify the protein to ease
or disallow the ligand binding. Many proteins have binding
sites buried inside their cores, which implies that a ligand
must traverse through a tunnel or a channel1 before it can
bind to the functional site in the protein. In such cases, we
need to analyze whether the ligand is likely to pass through
the tunnel or channel into the protein core.

All chemical systems, such as the proteins interacting
with ligands, follow the second law of thermodynamics:
they tend to minimize their potential energy. In practice,
the most probable conformation of the molecules (i. e. spatial
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1. In the following text, we will speak about tunnels for simplicity.
However, the mechanisms of a ligand passing through a channel are
the same as for a tunnel.

position of their atoms) is the one with the lowest potential
energy. However, it is also possible for molecules to make
a transition from one local minimum to another, depending
on system temperature and height of energetic barrier – the
smaller energetic barrier, the more probable is the transition.
In the molecular modeling methods, the function estimating
the potential energy for a given conformation is called a
force field. The analysis of the potential energy given by the
force field allows us to compute the probability of some
conformation to appear in the real-world chemical system. It
allows to predict whether or how fast some chemical process
(such as a ligand passing through a tunnel) can occur at a
given temperature.

To study the ligand binding or unbinding, we need to
evaluate the potential energy of the ligand passing from
protein surface through the tunnel into the active site or vice
versa. The ligand binds in an active site if there is a strong
local energetic minimum and it passes through the tunnel
if there is no significant energy barrier along the way (the
gradient of potential energy is more or less decreasing from
tunnel entrance to its binding site). When a tunnel contains
some strong repulsive barrier, the ligand is likely not to pass
through the tunnel. Note that the energetic profile of the
tunnel is unique with respect to the ligand, as it reflects
the specific ligand-protein interactions occurring during the
ligand passage.

The ligand binding to a protein’s active site or binding
site is usually computed by molecular docking. A molec-
ular docking algorithm traverses the conformation space
of the protein-ligand complex and searches for energetic
minima [2], [3], [4], [5]. The result of the molecular docking
is the structure of the protein-ligand complexes together
with an estimation of the respective free energy of binding.
Thus, the users can learn which ligand binds with the lowest
energy or study the orientation of a ligand in a protein active
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site. However, the molecular docking computes only the
lowest energy positions of a ligand within some region of
a protein, and thus it is not suitable for the study of the
ligand transport through a protein tunnel.

In this paper, we present a novel method for compu-
tation of the binding free energy variation and the ligand
trajectory (movement of the ligand’s atoms along the tunnel).
It allows to study the processes of ligand binding and
unbinding through the tunnels of any protein. Our method
is based on a molecular docking algorithm – it iteratively
docks the ligand along the previously calculated tunnel
and at each point it evaluates its binding free energy. Our
docking works with restraints. It uses a combination of the
chemical force-field from AutoDock Vina [2] to compute
the binding free energy of the protein-ligand complex and
a newly developed restraints, which restricts the ligand
positions to specified part of the tunnel and to vicinity of
defined conformation. Note that restraints produce penal-
ization energy, which is used to keep a ligand in a suitable
position, but the binding free energy reported by CaverDock
is based on the original AutoDock Vina force field only.
With the restraints, a contiguous ligand trajectory with
arbitrary step size (the maximal change in ligand’s atoms
position between two consecutive conformations) can be
generated. Thus, the position of the ligand within the tunnel
can be constrained to a defined area. Since there may exist
many possible paths through a given tunnel, the paths are
searched using a heuristic algorithm with backtracking. Our
method is implemented in the user-friendly software tool
CaverDock, which uses parallel architecture to maximize
the performance of the ligand transit computation (from
minutes to a few hours using a desktop computer).

This paper focuses primarily on the computer-science
topics: it introduces our method and its implementation.
It also presents basic evaluation, which illustrates that the
produced trajectories and energetic profiles can be obtained
in a reasonable time. The paper targeting the CaverDock
user community, focused on the biochemical topics (setting
the calculation and interpretation of results, evaluation and
benchmarking CaverDock with realistic use cases on many
protein-ligand pairs) is prepared in parallel with this pa-
per [6], [7].

The rest of the paper is organized as follows. Section 2
summarizes the work related to our paper and describes
the difference between our method and state-of-the-art. The
high-level overview of our method is given in Section 3.
Following three sections discuss the method in detail: Sec-
tion 4 introduces the algorithm for tunnel discretization,
Section 5 describes our modifications of docking algorithm
using restraints for ligand position and Section 6 discuss
the searching of trajectory space. The evaluation of our
implementation is given in Section 7. We conclude and
sketch future work in Section 8.

2 RELATED WORK

A very fast approximation of biomolecules represents the
atoms as solid macro-world objects. The transport process of
a ligand through a tunnel in a protein is then studied anal-
ogously to a macro-world objects’ mechanics: the molecular
shape is formed by spheres representing the atoms (which

may be connected through flexible joints), neglecting any
chemical forces, such as electrostatics, hydrogen bonds or
solvation effects.

The majority of the geometry-based approaches analyze
the tunnel only, without generating a ligand trajectory [8],
[9], [10]. Those software tools take a protein or multiple
conformations of the protein as the input and generate the
geometry of the tunnel. The ability to transport a ligand is
then judged based on tunnel geometry. A comprehensive
study of different geometrical methods can be found in [11],
[12].

A different approach to the geometric analysis is taken
in MoMA-LigPath [13]. The ligand transport is studied here
by an algorithm inspired by robotic motion planning. The
protein and ligand are understood as mechanical objects,
which are partially flexible as they may change the dihedral
angles. The algorithm searches for a ligand trajectory from
the active site to the tunnel entrance by moving the ligand
and the flexible parts of the receptor. Such algorithm allows
to detect parts of the receptor which need to be moved to
allow the ligand to pass through the tunnel. However, it
does not use a chemical force field, so there is no quanti-
tative information showing how difficult is for the ligand
to pass the tunnel due to chemical interactions (attractions
and repulsions). Moreover, the induced movement of the
ligand and the flexible parts may be unrealistic, as with the
chemical forces different movements may be preferred.

The molecular dynamics (MD) uses an empirical force
field to model the physical properties of the atoms and
their interactions in time. There are many well-established
software tools for MD, such as Amber [14] or Gromacs [15].
However, it is not practical to model the transportation
of a ligand through a tunnel with classical MD, as the
simulation time is often extremely long.Therefore, various
modifications of MD are used to speed-up the process.

The metadynamics is an enhanced sampling technique
which introduces biases in the form of repulsion energy
on the already visited parts of the conformational space,
such as the conformations of a molecule or the positions
of a ligand within a tunnel [16]. The bias is computed
according to the simulation state defined in term of collec-
tive variables (a small number of variables describing the
simulation space). The metadynamics can be used to pass
a ligand through a tunnel in a protein [17] and evaluate
the thermodynamics and kinetics of the process. It explores
simulation states much faster than MD, however, comparing
to the geometrical approaches, it is still much more compu-
tationally demanding. Moreover, an expert user has to setup
the metadynamics computation properly, as an incorrect
definition of the collective variables may lead to inefficient
biassing.

Another technique based on MD allowing to simulate
transportation through a tunnel is the steered MD [18]. With
steered-MD, the external force is applied to a ligand such
that it is pulled from or to the tunnel. The technique is, sim-
ilarly to metadynamics, more computationally demanding
than the geometrical methods. An expert user has to set up
how the external force is applied, otherwise, there can be a
false bottleneck observed (e. g. when a ligand is pulled in
the wrong direction against the protein backbone).

The molecular docking has been developed for eval-
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uation of the ligand binding free energy in the protein
active site. It performs the search of many protein-ligand
conformations and returns the ones in significant energetic
minima. Thus, it is possible to study if the ligand binds
preferably in the active site, or compare the minima of
different ligands (i. e. to identify which ligands are more
likely to interact with the protein). Many docking software
tools are well-established and widely-used in the scientific
community [2], [3], [4], [5]. Molecular docking is not suitable
to be directly used for analysis of ligand transport, as it
samples conformation space coarsely to find significant min-
ima, but does not search the ligand path into the minima.
However, it can be used as a basis for docking-based tools.

Similarly to our tool, molecular docking is used to an-
alyze the transport process in SLITHER [19]. However, the
SLITHER does not employ restrained docking. Instead, the
movement of the ligand is induced by the biasing force at
the already visited positions. Therefore, there is no mech-
anism to ensure the ligand movement is contiguous or at
least provides fine-grained sampling of the trajectory in the
tunnel – it may jump over bottlenecks without sampling
the energy barriers or even jump into a different tunnel.
Moreover, there is no sophisticated tunnel geometry analy-
sis and the ligand is moved along the y-axis only. Therefore,
SLITHER cannot be reliably used for highly curved tunnels,
e. g. U-shaped.

3 METHOD OVERVIEW

In this section, we describe the basic concept of our method.
The more detailed discussion will be given in the following
sections. The method is based on a driven step-by-step
movement of the ligand through the tunnel.We first dis-
cretize the tunnel into a set of discs, so the ligand movement
through the tunnel can be driven, i. e. it is possible to define
a ligand position in the tunnel and thus also movement
”forward” and ”backward” in the tunnel. After the dis-
cretization, the ligand is iteratively docked into consecutive
positions along the tunnel, allowing to compute binding or
unbinding trajectory.

3.1 Tunnel Discretization

To drive the ligand movement in the tunnel, we need to re-
strict the space where the ligand can be placed in each step.
We use the tunnel geometry approximated by a sequence of
spheres as the input. Such sequence can be obtained from
Caver [8] or a similar tool. The sequence of spheres is then
transformed into a sequence of n disks θ1, . . . , θn. We create
the disks by cutting the tunnel into slices of an upper-bound
thickness.The path of the ligand through the tunnel can be
defined as the iterative placement of the selected ligand’s
atom to consecutive disks. Note that an arbitrary atom of
the ligand can be selected, but it must be the same for the
whole tunnel trajectory.

3.2 Docking with Restraints

The ligand conformation λ is defined by the Cartesian
position of its atoms: λ = {ai}

m
i=1. Having a discretization

disc 1

dragged atom

disc 5 disc 6 disc 7...

Fig. 1. Schematic 2D view of traversing tunnel, where the selected
ligand’s atom is placed onto consecutive disks. As no contiguous move-
ment of the ligand is required, the ligand flips between disks θ6 and
θ7, thus the small geometrical bottleneck between those disks is not
detected.

dragged atom

Fig. 2. Schematic 2D view of a ligand traversing a tunnel. The ligand is
depicted in black, its previous position used as a pattern is shown in grey.
Restricting the movement of atoms causes the geometrical bottleneck
between θ6 and θ7 to be detected when the ligand passes from θ7 to θ8,
as can be seen in the last figure.

of our tunnel, we can select an atom of the ligand ac ∈ λ,
which is placed onto any position of the selected disk θ:

ac ∈ θ (1)

We say the ligand is docked onto the disc when its atom ac
lies onto the disc. By placing the atom ac onto consecutive
discs θ1, . . . , θn, we force the ligand to move through the
tunnel. Such ligand trajectory samples the tunnel without
large gaps (i. e. the ligand cannot overcome very narrow
bottlenecks or even jump to different tunnel), however,
the trajectory is not contiguous (the ligand can e. g. rotate
freely). We use this non-contiguous trajectory to compute
the lower-bound energy profile of the ligand transport. The
example of such trajectory is depicted in Figure 1. As
we can see, atom ac is stuck to the disk and by moving
through the tunnel, the sampling of the transport process is
obtained. However, the ligand may perform non-contiguous
movement: it flips between disc θ6 and θ7.

The contiguous trajectory can be computed by restricting
the movement of each atom by constant δ. When a new
ligand conformation λi+1 is generated, the distance of each
atom from its previous position in λi is upper-bound:

∀j ∈ [1,m] : |aj − bj | < δ (2)

where aj ∈ λi, bj ∈ λi+1. We say λi is the pattern restraining
the position of λi+1, formally: λi+1 ∈ ∆λi, when Eq. 2
holds.
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disc 7disc 6disc 5disc 7disc 6disc 5

Fig. 3. Schematic 2D view of a ligand traversing a tunnel, where the
ligand is stuck at a bottleneck (left figure). When a different orientation
of the ligand is selected, the ligand may pass without reaching the barrier
(right figure).

We can use the pattern restraint when a new position
of the ligand is generated. Let λi represents the ligand
conformation docked onto disc θi. When the ligand position
λi+1 on the disc θi+1 is searched, the pattern restraint
ensures that λi+1 ∈ ∆λi, thus, transition between discs is
contiguous (upper-bound by δ). Note that the discs must
be generated such that the distance between the discs must
be lower than δ. The example of using pattern restraint is
depicted in Figure 2. As we can see, the pattern disallows
the ligand to flip (as exemplified by the movement from disc
6 to disc 7 in Figure 1), and the small geometrical bottleneck
is detected.

3.3 Trajectory Search

The contiguous trajectory can be obtained by iterative dock-
ing onto the disks with restricted changes in the position of
all atoms by a pattern restraint. However, we want to allow
the ligand to optimize its position at each disc to find a local
energetic minimum. This minimum may be unreachable
after one step when the ligand movement is restricted by
a pattern. Thus, we search for the ligand trajectory, where
multiple conformations may be docked onto the same disc.
More precisely, having the conformation λi

j at disc θi, we

search for conformation λi
j+1 ∈ ∆λi

j , λ
i
j+2 ∈ ∆λi

j+1, . . .
until the energy of the new conformations is improved. We
call these steps the optimization steps, as they allow the
ligand to find a low-energy position on the disc, which may
not be feasible immediately after the transition from θi−1 to
θi.

The ligand movement described above prefers the transi-
tion where the ligand follows the strongest energy gradient
locally between following steps. Although this scenario is
the most probable in real-world systems, the ligand may oc-
casionally make a transition to some different conformation,
which may allow it to pass the energy barrier with lower
energy. Consider the case depicted in Figure 3. Depending
on its orientation, the ligand may or may not get through the
tunnel bottleneck. Thus we need to search multiple variants
of the ligand trajectory.

The number of contiguous trajectories may be very high
– the transition to a new disk may change the ligand posi-
tion, orientation, and conformation (relative position of the
atoms within the ligand). The exhaustive search of possible
trajectories is not feasible due to the time required to dock
ligands with restraints (typically hundreds of milliseconds).
Thus, we have introduced a simple heuristic. We move
the ligand only in one direction in the tunnel (e. g. from
the binding site to the protein surface). When the binding
free energy of λi

j is significantly higher than the binding

free energy of some known conformation λi
low (i. e. ob-

tained during lower-bound trajectory computation), we set
λi
j = λi

low, and search the trajectory moving the ligand back-
wards to previous disks θi−1, θi−2, . . . . The backtracking
ends after the forward and backward trajectories converge,
or after the beginning of the tunnel is reached. Note that the
resulting trajectory still follows only one direction. When the
backtrack is used the trajectory is reversed and integrated
into a forward trajectory.

The situation when the backtracking trajectory con-
verges with a forward trajectory (i. e. λi

backtrack ∈
∆λi

forward) allows to join both trajectories. The optimization
of the ligand position moves it to a minimum at the current
disc which allows convergence in many cases. However,
the ligand may need to overcome some energetic barrier
to converge. Therefore, we use also an explicit convergence
process: a weak force is applied to the ligand in the back-
track trajectory in order to pull its position to the vicinity of
the ligand in the forward trajectory.

3.4 CaverDock Workflow

From the user’s perspective, CaverDock is a command-line
tool taking the molecules’ structures and the tunnel geom-
etry as input and producing the trajectory of the molecule
and energetic profile as output. The CaverDock workflow
consists of multiple steps:

1) gather the input data (ligand in pdb or mol2 format,
protein in pdb format), which can be obtained from
experiments, downloaded from PDB 2 etc.

2) convert the input data into PDBQT format using
AutoDock Tools [5]

3) identification and selection of a tunnel within the
protein using Caver [8]

4) discretization of the tunnel exported from Caver by
the CaverDock script discretizer.py

5) (optional) setting the flexibility of selected side-
chain residues by AutoDock Tools

6) computing a box around the tunnel and the flexible
residues either manually or using the CaverDock
script prepareconf.py

7) execution of CaverDock to search for the ligand
trajectory

8) analyze CaverDock trajectory and the energetic pro-
file, and optionally identify new side chains which
should be flexible and return to step 5

CaverDock’s script flexibilize.py allows to automat-
ically search for flexible residues. The script first runs
CaverDock with the rigid receptor, and then iteratively runs
CaverDock allowing the flexibility on the side-chains which
have formed the bottlenecks in the previous iteration.

4 TUNNEL DISCRETIZATION

In this section we describe our requirements on the tunnel
discretization in detail and the important parts of the algo-
rithm performing the discretization.

2. https://www.wwpdb.org/
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FILIPOVIČ, VÁVRA et al.: CAVERDOCK: A NOVEL METHOD FOR THE FAST ANALYSIS OF LIGAND TRANSPORT 5

4.1 Tunnel Discretization Requirements

As the first step in the CaverDock workflow, the tunnel must
be discretized in discs, which will restrict the ligand’s posi-
tion in every docking. We use a geometric representation
of the tunnel from Caver [8]. It approximates the tunnel as
a sequence of spheres T = {Si}

k
i=1, where the following

holds:

1 ≤ i < k : Si

⋂
Si+1 6= ∅

∀i 6= j : Si 6⊆ Sj

(3)

Moreover, the tunnel T never intersects itself, i. e. it is
topologically equivalent to a cylinder.

Recall that the movement of the ligand is determined by
the placement of its atom (the drag atom ac) to the discs.
Thus, we need to transform the tunnel T to a sequence of
discs.

Definition 4.1. The cut θ of tunnel T is a disc in the three-
dimmensional space, which is defined by a triple θ =
(A, u, r), where A ∈ R

3 is a centre, u ∈ R
3 is a normal

and r > 0 is a radius. The T ∩ θ must be a continuous
set and ∃δ > 0 such that ∀ε > 0, ε < δ holds (A, u, r +
ε) ∩ T = θ ∩ T.

Informally, Def. 4.1 ensures that a disc θ cuts the tunnel
T in one place only, and it cuts it completely.

Having the discs cutting the tunnel defined, we can
define how to generate cuts for the whole tunnel. Let
Θ = {θi}

n
i=0 be a sequence of discs cutting tunnel T. We

require the cuts to not intersect each other in more than a
single point, formally:

θi, θj ∈ Θ⇒ |θi ∩ θj | ≤ 1 (4)

Moreover, we need to upper-bound the distance between
discs, so we can also upper-bound the movement of the
ligand atoms (to allow a contiguous trajectory generation).
Let δ be an upper-bound of discs’ distance and θi, θi+1 ∈ Θ.
Then formally we require:

∀x ∈ θi ⇒ ∃y ∈ θi+1 ⇒ ‖x− y‖ ≤ δ

∀y ∈ θi+1 ⇒ ∃x ∈ θi ⇒ ‖x− y‖ ≤ δ
(5)

The fundamental requirement is to move forward in the
tunnel, i. e. to generate a new cut ahead of the last cut:

θi, θi+1 ∈ Θ⇒ 〈θnormal
i , θcenteri+1 − θcenteri 〉 > 0 (6)

Finally, we want to start at the first sphere and end at the
last sphere:

Scenter
1 ∈ θ1 Scenter

k ∈ θn (7)

4.2 Tunnel Discretization Computation

The discretization algorithm iteratively adds new discs to
Θ. The tunnel geometry may be very complicated since the
consecutive spheres may differ in radius significantly and
may form sharp turns. Thus, we haven’t found any simple
analytical solution for the tunnel discretization. Instead, we
have developed an iterative algorithm, which adds disc
θ ∈ Θ with the direction defined by a smoothed curve rep-
resenting a tunnel and iteratively improve the positions of
the disc to fulfill the requirements described in the previous
section. In this section, we will focus on the main aspects of
the algorithm, omitting the implementation details.

Fig. 4. Schematic 2D view of a curve (red) representing the tunnel
direction. Left: naive solution where the centers of the spheres are
connected; right: the centers of the minimal cuts (green) are connected.

4.2.1 Direction in the Tunnel

First, we define a curve, which represents a direction in the
tunnel:

γ(t) : [0, l]→ R
3 (8)

where l is the length of the tunnel.
The easiest way to construct γ(t) is to connect the centers

of the spheres in T. However, some spheres may have a
small influence on the shape of the tunnel and create a
curve which will not represent the tunnel direction well
(see Figure 4 left). Thus, we compute minimal cuts in the
center of each sphere representing the tunnel and connect
the centers of those cuts (see Figure 4 right). The minimal
cuts are searched by an iterative optimization that uses the
algorithm [20] for computing the smallest enclosing circle.

However, such construction is still not perfect, as it is
not smooth. Let C1 . . . Cn be the centers of tunnel’s minimal
cuts. For any t0 ∈ [0, l], we can easily find Ci, Ci+1 such
that t0 lies in between them. We define a vector field
Ω(t) : [0, l]→ R

3. For a point t0, we define:

Ω(t0) = (1−λ) norm(Ci+1−Ci)+λ norm(Ci+2−Ci+1) (9)

where

λ =
‖γ(t0)− Ci‖

‖Ci+1 − Ci‖
(10)

if i+ 2 ≤ n, else

Ω(t0) = norm(Ci+1 − Ci). (11)

It represents a simple weighted average of vectors connect-
ing centers of the minimal cuts. We further smooth Ω(t),
creating a new vector field Φ: [0, l]→ R

3:

Φ(t0) =

∫ t2=min{t0+∆,l}

t1=max{t0−∆,0}
Ω(t)(∆− |t0 − t|)2dt. (12)

The vector field Φ(t) forms a smooth curve, which
represents the direction in the tunnel well enough and is
therefore used for initial placement of discs in the tunnel.

4.2.2 Helper Functions

Before we start with the tunnel discretization algorithm, we
will introduce several important helper functions, which are
used by the algorithm to place the discs along the curve Φ(t)
representing the direction of the tunnel.

The function fitDiscTunnel computes the center and
radius of the disc for the given plane ρ defined by the
normal n and reference point P . The disc must be created
to fulfill Definition 4.1: it must cut the tunnel at one place
only and it must cut it completely. The function recursively
builds a set of spheres C ⊆ T, which contain P or intersect
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Algorithm 1 Algorithm for tunnel discretization

function DISCRETIZETUNNEL(T, δ)
centers← [Scenter | S ∈ T]
discs← [fitDiscTunnel(norm(Scenter

1 − Scenter
0 ), Scenter

0 )]
curve← TunnelCurve(centers)

for Si ← S0, . . . , S|T |−2 do

dir ← Scenter
i+1 − Scenter

i

line← {Scenter
i + t · dir | t ∈ R}

d← 0
while True do

prev disc← discs[|discs| − 1]
plane← getPlane(prev disc) ⊲ Construction of a plane

containing disc
d← distance(plane ∩ line, Scenter

i ) + ǫ
if d > ‖dir‖ then

break
end if
if makesSharpTurn(prev disc, curve) then

disc center ← prev disccenter + ∆ ∗ prev discnormal

disc normal← prev discnormal

doShift← shiftSharpTurn
else

disc center ← prev disccenter + ǫ ∗ prev discnormal

disc normal← getWeightedDir(curve, i, d)
doShift← shiftDisc

end if
disc← fitDiscTunnel(disc normal, disc center)
disc← doShift(prev disc, disc)
if |discs| ≥ 2 ∧ dst(disc, discs[|discs| − 2]) < δ then

Pop(discs)
end if
Append(discs, disc)

end while
end for
return discs

end function

both ρ and some sphere in C . Having the C constructed,
the algorithm projects spheres from C to ρ and computes
the circle encapsulating all projected spheres using the algo-
rithm [20]. The computed circle determines the center and
the radius of the computed disc, the normal of the disc is
the same as the normal of ρ.

The function shiftDisc modifies the disc θi+1 to fulfill
Conditions 4, 5 and 6 in relation to the already placed
disc θi. Let ρ be a plane orthogonal to planes where θi
and θi+1 lies. In ρ, discs θi, θi+1 are projected as line
segments. The algorithm is perfomed iterativelly: the line
segment representing the disc θi+1 is modified to not exceed
δ in their ending points (Condition 5) and to not intersect
(Condition 4). After that, disc θi+1 is reconstructed from the
projection and the fitDiscTunnel is called (as Definition 4.1
may be broken by shifting). This process is repeated untill
there is no change on the disc θi+1.

In the case of a sharp curve in the tunnel, we need a
more progressive placement of the disc, implemented in the
function shiftSharpTurn. The plane θi+1 is initially placed
in ∆ distance from θi, which breaks condition 5, but gives
the idea of tunnel curvature. The function shifts the θi+1

to intersect θi in the point nearest to θi, sets its center and
normal to not exceed δ distance from θi and calls shiftDisc
to finalize the θi+1 placement. The main difference between
shiftSharpTurn and shiftDisc is that shiftSharpTurn sets
the initial position of θi+1 such that its normal is pointing to
the more distant direction of the tunnel.

Fig. 5. Discretization of a tunnel in the native toluene/o-xylene monooxy-
genase hydroxylase. The red circles represent the discs, the red arrows
represent the tunnel direction and the grey balls represent the tunnel
obtained from Caver [8].

4.2.3 Discretization Algorithm

The Algorithm 1 presents the main structure of the tunnel
discretization algorithm. The input of the algorithm is a
sequence of spheres T and the maximal distance between
two discs δ. It uses helper functions, which are described
in the previous section. The lines from 2 to 4 initialize the
required data structures. The array discs will be used to
construct Θ. During the initialization, the first disc is created
with the same center as the first sphere and the normal
given by the vector going from the center of the first to the
center of the second sphere (so the first part of condition 7
is fulfilled). The curve contains the smoothed curve Φ(t)
approximating the direction of the tunnel (see Section 4.2.1).

At line 5, the algorithm iterates over the spheres from
T, where in each step it constructs line, containing the line
connecting the actual and the next sphere. In the inner loop,
the discs are generated from the centre of the sphere Si

to Si+1 (condition at line 13). The variable d determinates
our distance from Scenter

i and controls the number of loop
iterations at line 9.

The function isSharpTurn detects if the tunnel forms a
sharp turn at the particular place. If so, the algorithm uses
a more aggressive strategy for the next disc placement: it
places a new disc parallel to the current disc with distance
∆. Otherwise, the center of the new disc is displaced by ǫ,
and its normal is set according to the weighted direction
curve. The constant ∆ determines the distance, which is
checked for deciding whether the turn is sharp. We use
∆ = 2δ. The constant ǫ determines the granularity of
discretization, and it must be lower than δ. We set ǫ = 1

10δ.
After the initial disc placement the function

fitDiscTunnel is called. The function computes the center
and radius of the disc, so the disc forms the cut of the tunnel
(see Definition 4.1), and the radius of the disc is minimal.
After fitting the disc, the function doShift may further
improve its placement according to the curvature of the
tunnel, so the disc will be placed to fulfill Conditions 4, 5
and 6. Finally, the algorithm checks if the disc created in
the previous iteration can be omitted (to not generate too
dense discretization) at lines from 27 to 28. An example of
the algorithm output is depicted in Figure 5.

5 DOCKING WITH RESTRAINTS

As we have described in Section 3.2, we are employing two
types of restraints. Recall that the tunnel-position restraint
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snaps a selected atom ac in ligand λ to the disc θ and
the pattern restraint places the ligand λ in the vicinity of
λpattern.

During the docking, the position of a protein-ligand
complex is minimized. Therefore, we need to impose spatial
restraints in the form of energy terms that are added to the
force field function from AutoDock, that will be minimized
when searching for the optimal docking position within
each disk. However, the penalty produced by restraints is
used to hold a ligand in a defined area during minimiza-
tion and is not added to the AutoDock Vina energy after
minimization. Therefore, only the original AutoDock Vina
energies are reported as the binding free energy of the
protein-ligand complex.

In this section, we first introduce the search-space op-
timization methods implemented in AutoDock Vina and
after that describe how the newly-added restraints are im-
plemented.

5.1 AutoDock Vina Search Space Methods

The molecular docking is an optimization problem, where
the docking program is searching for the global minimum
of energy defined by the position of the ligand and the
flexible parts of the receptor with respect to the given
force field. Two optimization methods are working together
in AutoDock Vina: a stochastic global optimization and a
gradient-based local optimization.

The simulated system has multiple degrees of freedom
(DoF), which must be searched. First, the ligand is consid-
ered as a body in the space, having its position and orienta-
tion vectors (six dimensions). Second, the ligand is a flexible
body – it may be bent by setting angular values for its
free dihedral angles (one dimension per dihedral angle on
every single bond). Third, the receptor may contain flexible
side-chains (so also the receptor geometry may be partially
flexible), where each flexible residue contains one or more
free dihedral angles. Thus, the optimization algorithm must
optimize a high number of DoF (typically tens). The nature
of the chemical force field creates a lot of local minima in
the search space.

The global-optimization method implemented in
AutoDock Vina is based on the Markov chain Monte Carlo
method (MCMC). The initial state (position and orientation
of the ligand, dihedral angles of the ligand and flexible side
chains) is selected randomly keeping the ligand within the
defined box. Subsequently, a predefined number of global-
optimization steps are performed. In a global optimization
step, one or more DoF are changed by an upper-bound
random value, so the newly-generated conformation of
the ligand and flexible side-chains is in the upper-bound
vicinity of the previous conformation. After the global op-
timization step, the local optimization is executed. If the
local optimization converges to a better minimum than what
was reachable from the previous global-optimization step,
the global-optimization accepts the new step and uses it
as a base for the next iteration. Otherwise, the new step is
accepted only with small probability based on the Metropo-
lis critorion (this feature allows the algorithm to escape
from a local minimum). During the global-optimization, the
significant local minima are stored, so AutoDock Vina is able

to return multiple different conformations, not only the best
one.

The local-optimization in AutoDock Vina implements
the gradient-based Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method [21]. It is a variant of the Newton method,
so derivatives of all force-field terms have to be computed
(it also uses the second derivatives, but they are computed
numerically).

5.2 Tunnel-position Restraint

To snap atom ac ∈ λ to the disc θ, we add a force-field term
which penalizes the ligand’s positions where |ac − t| > 0,
where t ∈ θ : ∀u ∈ θ, u 6= t, |ac − u| > |ac − t| (i. e. the
distance is computed as the distance between ac and the
nearest point in θ). The penalization energy ep is computed
as a Gauss function of the distance |ac − t|:

eposition = pmax − pmaxe
− |ac−t|2

0.5 (13)

where pmax is the maximal value of the penalization
energy. The constant 0.5 used in the exponent has been
selected experimentally. It ensures that the half of emax

penalization is applied when |ac, t| = 0.5 Å. Note that the
bell-shaped function is used to avoid strong penalization of
small distances between ac and θ too strongly in order to to
keep the good numerical stability of the BFGS optimization
method (so the Condition 1 can be violated by a small
distance in practice).

The term in Eq. 13 and its derivative has been added
into the energy and force evaluation codes in AutoDock
Vina, so it is applied to the dragged atom ac during the
BFGS local optimization. Moreover, we have added a simple
modification into the MCMC global optimization: when
a new conformation is randomly generated, the ligand is
shifted by a vector t − ac, so the global optimization step
does not break the tunnel-position restraint. Note that the
modification of the global optimization method is not nec-
essary for applying the restraint in the docking, however, it
speeds up the docking convergence.

5.3 Pattern Restraint

The pattern restraint keeps the ligand λ in the vicinity of
the pattern position λpattern (Equation 2), so it must be
applied to all atoms of the ligand. The pattern restraint is
also applied to the flexible side chains, however, for the
sake of simplicity, we describe the application to a ligand
only (the principle of the pattern is the same for the ligand
and flexible side chains).

The pattern restraint is applied for all pairs of corre-
sponding atoms a ∈ λ and b ∈ λpattern. Let δ be the distance
which is not penalized by the pattern restraint. The energy
of the pattern restraint is computed as:

epattern = c ·
∑

a∈λ,b∈λpattern

max (0, |a− b| − δ)) (14)

where c is a constant determining the strength of the
pattern (it has been empirically set to 40). Apparently, Eq. 14
is not differentiable in the area where |a−b| = δ. We define a
derivative at these points to be 0 and keep the computation
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of the pattern restraint simple for the sake of computational
efficiency.

The MCMC global optimization method is constructed
to perform a long chain of conformational changes to escape
from the local minima. However, when the pattern restraint
is applied, the movement of the ligand is restricted to the
vicinity of the pattern. Thus, we have modified the global
search, such that (i) the initial configuration mimics the
position of the pattern and (ii) the number of steps of the
global optimization is 100× lower compared to the default
setup. The MCMC method still allows to escape from the
local minima but does not generate too long chains due
to the limited range of ligand movements from the initial
configuration.

Note that, as all restraints are evaluated as force field
terms, they can be violated if there is some strong energy
contribution generated by different force field term (e. g. the
pattern restraint may be violated when pushing the ligand
against a rigid part of the receptor). Therefore, CaverDock
filters the computed conformations and discard those that
where the restraint violations exceeding some threshold
(e. g. if we consider contiguous conformation changes up to
0.5 Å, we can set the pattern restraint to penalize movement
larger than 0.4 Åand tolerate the movement not exceeding
0.5 Å).

6 TRAJECTORY SEARCH

The implemented restraints allow us to define the ligand’s
position in the tunnel and upper-bound its distance from
some pattern. Thus, it is possible to iteratively dock the
ligand along the tunnel and analyze the energy of the
transport process. Recall that we compute two types of
trajectory:

• lower-bound trajectory, which samples the tunnel
finely, but the movement of the ligand and flexible
side-chains is not contiguous;

• upper-bound trajectory, which is contiguous.

The lower-bound trajectory may underestimate the energy
of barriers, as the ligand may flip or change its conforma-
tion dramatically between two consecutive steps (Figure 1).
However, its computation is straightforward – there is no
dependence between consecutive steps (only the tunnel-
position restraint is used), and therefore we may perform
only n docking steps, where n is the number of discs. The
upper-bound trajectory generates a contiguous movement
of the ligand and side-chains using the pattern restraint.
However, a high number of possible contiguous trajectories
exist and there is no guarantee that our method finds the
lowest energy trajectory. Thus, we call the trajectory upper-
bound, as it is not known if its energy may be further
improved. The optimal energies should lie between upper-
and lower-bound values.

Having a set of discs θ1 . . . θn, the lower-bound trajectory
is defined as

Λlb = λ1
min, λ

2
min, . . . , λ

n
min (15)

where λi
min denotes the conformation at disc i with the

lowest energy from all explored λi.

The upper-bound trajectory is defined as

Λub = λ1
1, . . . , λ

1
m1

, λ2
1, . . . , λ

2
m2

, . . . , λn
1 , . . . , λ

n
mn

(16)

where m1 . . .mn ≥ 1, so the upper-bound trajectory follows
a forward movement within the tunnel or changes the
ligand position on a disc, but does not go backward.

6.1 Ligand Movement Driving

The trajectory search is driven by a set of final state au-
tomata. Each automaton is designed to perform different
tasks:

• general automaton, controlling the overall progress of
the trajectory search;

• lower-bound trajectory automaton, performing lower-
bound trajectory computation;

• forward movement automaton, responsible for moving
the ligand forward in the tunnel;

• optimization automaton, optimizing the position of the
ligand at the particular disc;

• backtracking automaton, moving the ligand backward
if it hits a barrier;

• convergence automaton, pushing the ligand in a back-
tracked trajectory to converge with the forward tra-
jectory

The execution of automata can be nested. For example, the
general automaton calls the forward automaton to move
forward in the tunnel, and the forward automaton calls the
optimization automaton to improve the position on a disc.
The reason for such an implementation is twofold. First, the
different operations on the trajectory are separated and the
code is easier to maintain. Second, the computation can be
interrupted or altered at any place since each automaton
performs at most one state transition per call. Thus, it is, for
example, possible to execute multiple backtracking in paral-
lel, as the general automaton can immediately continue after
spanning a new backtracking automaton without waiting
for the backtracking to finish.

The automata call all the restrained docking computa-
tions in a non-blocking manner. They submit tasks into an
internal CaverDock queue, which is then processed in par-
allel. Therefore, it is possible to process multiple alternative
trajectories in parallel by executing multiple automata in a
simple serial loop, or an automaton may process multiple
alternatives at once.

6.1.1 Trajectory Search Parameters

The algorithm for trajectory search uses several parameters,
affecting its precision and a number of executed dockings
(and hence the computation time). Those parameters, listed
below, affect the state machines or the docking settings and
may be configured by the user.

• Parameter optimization stratregy determines the op-
timization criterion for the trajectory search. In the
current implementation, we can execute CaverDock
to minimize the highest energy peak across the whole
trajectory or minimize the integral of the trajectory
energy.

• Parameter backtrack threshold quantifies the energy
difference (in kcal/mol) between the lower-bound
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Fig. 6. General automaton.

and upper-bound energy which triggers the back-
tracking. It is expectable that the energy of contigu-
ous upper-bound trajectory will be higher, however,
too large difference may indicate that the upper-
bound trajectory is suboptimal. Therefore, when
the difference between the upper-bound and lower-
bound trajectory energies at some disc exceeds the
threshold, the backtracking is used to search for a
better trajectory.

• Parameter backtrack limit sets the number of discs
that are processed before a new backtracking can be
executed. The parameter may speed-up CaverDock
when the number of executed backtrackings is too
high. This parameter is ignored when the forward
trajectory cannot be computed because of a bottle-
neck (the backtracking is then started immediately).

• Parameter contiguous threshold sets the highest dis-
tance which the atoms can move between consecu-
tive conformations, if this movement is considered
contiguous.

• Parameter pattern limit sets the highest distance that
is not penalized by the pattern restraint. The pattern
limit must be lower than the contiguous threshold
so the pattern restraint may actually apply some
force to ligand position before the ligand position is
discarted.

6.1.2 General Automaton

The simplified scheme of the general automaton is shown
in Figure 6. After initialization, it starts to compute a
lower-bound trajectory Λlb and builds a cache of alternative
conformations Λcache (all examined conformations on discs
1 . . . n). When the lower-bound computation is not success-
ful (i. e. ∃i ∈< 1, n >, λi /∈ Λlb), the automaton halts in a LB
failed state. It may happen when the tunnel is very narrow
in some part, and it is not possible to dock the ligand there.
Otherwise, the general automaton starts with searching for a
contiguous upper-bound trajectory. It inserts λ1

min into Λub

and moves it into the forward state performing the following
steps:

• Call the forward automaton to move forward from
the last position λi ∈ Λub till it reaches the end of the
tunnel, or requests backtracking.

• If the forward automaton requests backtracking (the
energy of the forward trajectory is too high com-
paring to the lower-bound), create a backtracking
automaton and change the state to backtrack. The
backtracking automaton starts from conformation
λi+1
j ∈ Λcache, where i is the last position in the

forward trajectory Λlb and j is selected such that
λi+1
j has not been used for backtracking so far

and its energy is minimal. It builds a backtrack
trajectory Λbacktrack. If the trajectory Λbacktrack is
successfully found and improves the energy of the
trajectory, it is implemented into Λub. More precisely,
the conformations in Λub, from the conformation
where the backtracking trajectory can be connected
to the end of the trajectory, are removed and then
Λub ← Λub ∪ Λbacktrack. Otherwise, a new back-
tracking is executed using a different starting con-
formation from Λcache, which has not been used for
backtracking so far. If no such a conformation exists,
then the general automaton returns to the forward
state.

• If the forward automaton requests a forced back-
tracking (it cannot find a forward trajectory), the
backtracking automaton is created as in the previous
case, and the general automaton changes its state to
forced backtrack. The difference to the forced backtrack
state is that Λbacktrack is implemented into Λub every
time when it is found. If Λbacktrack cannot be found,
the general automaton ends in UB failed state: the
upper-bound trajectory cannot be computed.

6.1.3 Other Automatons

The forward and backward automatons are responsible for
moving the ligand in the tunnel. They perform essentially
two steps: transition to a different disc and optimization of
ligand’s position on the same disc. The optimization is per-
formed by the optimization automaton, which searches for
trajectory λi

2 ∈ ∆λi
1, λ

i
3 ∈ ∆λi

2 . . . until the energy of ligand
is improved. With backtracking automaton, optimization is
replaced by convergence every five steps. The convergence
automaton optimizes the ligand position at the same disc
similarly to the optimization automaton. However, instead
of moving the ligand to the local minimum, it uses a soft
pattern restraint to attract the ligand atoms to a position
determined by λi

dest ∈ Λub (by setting the constant c in
Equation 14 to one, instead of 40 used in the restraint forcing
the contiguous movement). Thus, it forces backtracking
trajectory to converge with the forward one.

6.2 Software Architecture

The CaverDock is built as an MPI application using master-
slave parallelism. There is one master process, driving the
trajectory search (i. e. executing automatons and assigning
work for slaves). The slave processes are responsible for
computing the restrained docking: they receive restraints
from the master (position of the disc and position of pattern
atoms) and send the computed conformations with the com-
puted energies (chemical force field and restraints’ energy).

The master process runs in a loop, querying automatons
and gathering data from slaves. The automatons are called
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Fig. 7. Arachidonic acid.

in a non-blocking fashion: they submit a work package
describing the input for the docking. This work-package is
held by the master process and assigned to a slave when
is ready. Therefore, automatons can submit any number of
work packages without waiting for the result and react by
changing its state when the work is completely done.

The CaverDock can also be executed in a simple docking
mode. In such case, only one slave process is executed,
taking the input for the docking from a command line.
When the user executes CaverDock with the parameters
used in the original AutoDock Vina, CaverDock operates
exactly as AutoDock Vina. However, it is possible to also
pass the restraint via command line. Therefore, CaverDock
is usable also as a docking tool allowing richer control over
the docking process via restraints. It may be applied for
observing a particular docking conformation when the user
is interested in searching for a ligand conformation with
some atoms restricted in a defined area of their interest.

7 EVALUATION

In this section we compare the results of CaverDock with
similar tools and demonstrate CaverDock’s ability to an-
alyze complex tunnels in reasonable time on chemically-
relevant data. The limited evaluation showing chemical rele-
vance of the computed results is demonstrated on two cases:
ligand unbinding and reproduction of ligand positions. The
comprehensive evaluation of CaverDock is being presented
in parallel in other papers [6], [7].

7.1 Testbed Setup

For testing the stability and time demands of CaverDock, we
have prepared a representative set of biologically relevant
protein-ligand pairs shown in Table 1. The set contains
proteins with both short and long tunnels (e. g. the insulin
hexamer tunnel is discretized to 42 discs only, whereas the
glucose transporter tunnel is discretized to 362 discs). The
complexity of ligands also heavily varies: phenol has only 7
DoF (6 for the position and orientation and 1 free dihedral
angle) whereas the arachidonic acid has 20 DoF (14 free
dihedral angles).

We have tested CaverDock runtime using desktop com-
puter equipped by AMD Ryzen 7 1700 (8 cores at 3.0 GHz)
and 16 GB RAM. The resulting time, quality of the result and
a number of performed docking calculations are shown in
Table 2.

7.2 CaverDock Runtime and Robustness

CaverDock was not able to compute the upper-bound
trajectory in two cases (vitamin D receptor + 1,25-
dihydroxyvitamin D3 and cytochrome P450 2E1 + arachi-
donic acid), whereas the lower-bound trajectory has been

TABLE 1
The experimental set of molecules used for CaverDock evaluation.

protein+ligand ligand DoF discs

haloalkane dehalogenase
+ 1-chlorobutane

8 72

acetylcholinesterase
+ acetylcholine

10 85

leucine transporter
+ leucine

10 105

lactose permease
+ lactose

18 138

glucose transporter
+ glucose

12 362

lipase B
+ 4-methyloctanoic acid

12 60

insulin hexamer
+ phenol

7 42

aquaporin Z
+ glycerol

11 121

vitamin D receptor
+ 1,25-dihydroxyvitamin D3

13 92

cytochrome P450 2E1
+ arachidonic acid

20 149

computed in all of the tested cases. The arachidonic acid
contains a long chain with a high number of DoF (see
Figure 7), which complicates the process of searching for
the upper-bound trajectory. We suppose that CaverDock
heuristics fails to find the contiguous movement of such a
complicated molecule. 1,25-dihydroxyvitamin D3 has also a
high number of DoF, but the main reason why CaverDock
failed to compute contiguous trajectory is due to the narrow
part of the tunnel entrance, which is difficult to pass with a
contiguous movement. In contrast, lactose has also a high
number of DoF, but the tunnel in the lactose permease
is wider and CaverDock had no problem to compute the
contiguous upper-bound trajectory.

The computation time ranges from 1 m3 s to nearly 2.5 h.
The CaverDock heuristic is inO(n2), where n is the number
of discs (as backtracking can be issued during the whole tra-
jectory and, in the worst case, may continue to the trajectory
beginning). Therefore, the number of docking calculations,
and hence the computational time, may grow quadratically
with the tunnel length. However, the backtracking is not
issued often in narrow tunnels, where the running time may
grow according to the number of discs. The time required
for each docking is highly dependent on the number of DoF,
for example, 14.3 dockings per second are computed in the
case of phenol (7 DoF), but only 1.33 dockings per second
are computed in the case of lactose (18 DoF).

7.3 Energy Profiles

The energy profiles of the tested ligand-protein complexes
are shown in Figure 8. They represent the variation of the
binding energy of the ligands moved from the active site to
the tunnel entrance at the protein surface.

In all experiments the upper-bound trajectory has higher
energy than the lower-bound because the ligand movement
is restricted by the pattern restraint, and thus cannot eas-
ily overcome small bottlenecks. Whereas the upper-bound
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TABLE 2
The output characteristics and computational demand of CaverDock
calculations using ten different biological systems. LB = lower-bound,

UB = upper-bound.

protein result runtime dockings
haloalkane dehalogenase LB+UB 2 m 14 s 1,824
acetylcholinesterase LB+UB 4 m 46 s 1,920
leucine transporter LB+UB 7 m 4 s 2,688
lactose permease LB+UB 67 m 20 s 5,384
glucose transporter LB+UB 149 m 47 s 23,888
lipase B LB+UB 3 m 19 s 896
insulin hexamer LB+UB 1 m 3 s 900
aquaporin Z LB+UB 8 m 50 s 3,896
vitamin D receptor LB only 40 m 6 s 4,132
cytochrome P450 2E1 LB only 19 m 35 s 644

energies usually copy the shape of the lower-bound ener-
getic profile, some bottlenecks are visible in upper-bound
trajectory only (such as in acetylcholinesterase from distance
7 Å to 16 Å, in lipase B from 3 Å to 6 Å and aquaporin Z from
13 Å to 18 Å). As we can see, the contiguous trajectory adds
additional information useful for the ligand transport anal-
ysis. Note that the observed bottleneck does not necessarily
indicate that the transportation of a ligand through a protein
tunnel is not possible. The protein flexibility may allow
the ligand to pass even higher energy barriers observed in
static structures. The interpretation of such data is crucial
– the part of the protein forming the bottleneck may be
more or less rigid in a real-world system, or sometimes
some form of flexibility may lead to the opening of the
tunnel and allow the ligand to pass. The CaverDock user
may select the residues to which the side chain flexibility
may be introduced. If a protein backbone forms an artificial
bottleneck, then a different protein conformation has to be
used.

7.4 Comparison with Similar Tools

We have tested the set of molecules described in Table 1
also with SLITHER [19] and MoMA-LigPath [13]. We were
not able to compute the trajectories in the tunnels of lipase
B, insulin hexamer, aquaporin Z, vitamin D receptor and
cytochrome P450 2E1 with SLITHER, and in glucose trans-
porter, aquaporin Z, vitamin D receptor and cytochrome
P450 2E1 with MoMA-LigPath. Therefore, at least for our
testing set, CaverDock was more robust regarding its ability
to compute the trajectories. The runtime of SLITHER and
MoMA-LigPath is in order of minutes in the worst case.
Therefore, CaverDock time is comparable for simpler cases
but may be significantly higher when a large number of
dockings needs to be executed.

The trajectories produced by CaverDock qualitatively
differs from the trajectories obtained with SLITHER and
MoMA-LigPath. More precisely, SLITHER generates scat-
tered, non-contiguous trajectory, whereas MoMA-LigPath
does not produce energy profiles. We demonstrate the dif-
ference in the produced trajectories using an example of the
transportation of acetylcholine through a tunnel in the pro-
tein acetylcholinesterase (PDB ID 1MAH). The acetylcholine
has been moved through the tunnel from the active site to
the protein surface. The trajectory computed by CaverDock
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Fig. 8. Energy profiles of the ligand movements in the test set defined in
Table 1. The distance is measured from the tunnel bottom to the protein
surface.

is shown at Figure 9. It can be seen that there are no gaps
(empty spaces) in acetylcholine trajectory – the movement
of its atoms is contiguous.

The trajectories computed by SLITHER and MoMA-
LigPath are shown in Figure 10. SLITHER does not imple-
ment a restrained docking, and as a consequence it produces
large gaps in the computed trajectory. MoMA-LigPath, on
the other hand, produces a contiguous trajectory. However,
no chemical force field is used in MoMA-LigPath, so the
user has no information describing the energy profile asso-
ciated with the trajectory. Moreover, the trajectory does not
reflect the chemical interactions and therefore can follow a
path which would not be favored in the real systems. It
can also be seen that the trajectory produced by MoMA-
LigPath is more regular compared to CaverDock (the direc-
tion of atoms’ movements is similar in multiple following
conformations), which is very likely a consequence of the
missing chemical forces, which increase the complexity of
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Fig. 9. Trajectory of acetylcholine in the tunnel of acetylcholinesterase
computed by CaverDock. All 174 positions of acetylcholine are shown
as the superimposed cyan sticks. The surface of the protein (close-up
of tunnel) is shown as the grey surface, the catalytic S203 (Cα atom) as
the magenta sphere, and the chemical structure of this ligand is shown
on the right.

Fig. 10. Trajectory of acetylcholine in the tunnel of the acetyl-
cholinesterase computed by SLITHER (left image) and MoMA-LigPath
(right image). The surface of the protein (close-up of tunnel) is shown as
the grey surface, the catalytic S203 (C atom) as the magenta sphere.

the optimized trajectory but are essential to describe the
realistic behavior of the molecules.

Note that although visualized for acetylcholinesterase
(Figure 9 and 10), SLITHER has generated trajectories with
similar gaps also for other test cases. We have compared
the CaverDock energy profiles to SLITHER in cases where
we were able to compute the SLITHER trajectory (Figure 8).
The data provided by SLITHER has been filtered: we have
removed all conformations which were not placed within
the tunnel determined by CAVER. Such filtering is necessary
to exclude any conformations in different tunnels or at the
protein surface. The advantage of the restrained docking
used in CaverDock can be seen when the energy profiles
are compared. The trajectory obtained with SLITHER was
sparser when compared to CaverDock and no conformation
was placed in the bottleneck. For example, only two confor-
mations were computed in the leucine transporter’s tunnel
and they are located before and after the bottleneck. In some
cases it might be possible to roughly guess the position of
the bottlenecks based on the gaps in SLITHER’s trajectory.
In other cases, SLIGHTER’s trajectory may include gaps also
at the positions with no observable bottleneck, which can be
seen for example in the second half of the trajectory with
haloalkane dehalogenase. CaverDock reports the energies
and conformations of the ligand in the bottlenecks, so it
is possible to analyze, which residues may be mutated to
increase the rate of ligand’s passage. Note that the absolute
energy values are different for SLITHER and CaverDock,
which is caused by using different chemical force fields (the
restraints force field terms are excluded from CaverDock
output energies).

7.5 Protein-ligand Unbinding Test Case

CaverDock was tested in a biotechnologically relevant case
study, published recently [22]. It is known that the re-
lease of the product 2,3-dichloropropan-1-ol (DCP) from
the buried active site is the rate-limiting step in the cat-
alytic conversion of 1,2,3-trichloropropane (TCP) into DCP
by the haloalkane dehalogenase DhaA31. Free energy cal-
culations were performed after exhaustive metadynamics
simulations to determine the free energy profiles of DCP
traveling through the tunnels of DhaA31 and the wild-
type DhaAwt. It was found that the energy barrier to the
release of DCP was higher in DhaA31 than in DhaAwt by
2.5 kcal/mol. This explained why DhaA31 is less prone to
release DCP than DhaAwt, which was in agreement with all
the evidence. When CaverDock was used to calculate the
energy profiles of DCP through the tunnels of those enzyme
variants, the energy barrier was much higher for DhaA31
than for DhaAwt, which followed the same trend as the
free energy results [22]. The energy barriers were always
located at the tunnel bottlenecks. The binding energy values
calculated with CaverDock were, however, different from
the respective free energy profiles. This was expected for
several reasons: 1) those CaverDock simulations did not
take into account the flexibility of the receptor during the
transport of the ligand, which necessarily raises the energy
with unnatural clashes; 2) the binding energy calculated by
Autodock Vina is only one component of the free energy,
and does not take into account the entropy of the system;
3) the solvation of the ligand may influence the energy
and facilitate the release. Nonetheless, CaverDock allowed
to correctly predict which enzyme can release DCP faster,
and helped in the identification of some of the residues
in the tunnels that interacted more strongly with DCP and
that may prevent its release. This information can be useful
for the design of improved biocatalysts. The metadynamics
simulations needed several weeks to be completed, while
each CaverDock calculation was performed in less than 0.5
hours.

7.6 Reproduction of Ligand Positions Determined by
Protein Crystalography

The ability of CaverDock to reproduce the protein-ligand
complexes determined by protein crystallography was
tested with the crystal structures of protein Hsp90 bound
with 34 inhibitors [23]. The list of PDB IDs with the respec-
tive results is provided in the Table 3.

We calculated the root mean squared deviations
(RMSDs) between the positions of the inhibitors found in the
crystal structures with the snapshots obtained from Caver-
Docks lower-bound trajectories, and the docked poses from
AutoDock Vina (the exhaustiveness was set to 10). In Table 3
we report both the lowest RMSDs as well as the RMSDs
for the lowest energy conformations from CaverDock and
AutoDock Vina. In most cases we reached low RMSD values
(≤ 2.0Å) fitting well the experimental data, and were as
precise or better than classical docking. CaverDock was able
to find significantly better complex than the docking in 9
cases out of 34 (PDB ID 2VCI, 5J2X, 6F1N, 6ELN, 5J86, 5LQ9,
5ODX, 6EL5 and 5LO5). CaverDock was able to get spatially
close to the position of the original inhibitors, but the lowest
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TABLE 3
RMSD (in Å) of complexes obtained by CaverDock and AutoDock Vina

compared to complexes obtained by crystallography.

The Closest Pose The Lowest Energy Pose
PDB ID Docking CaverDock Docking CaverDock
2VCI 9.20 0.86 10.09 1.25
2UWD 0.70 0.67 0.70 0.67
2BSM 0.68 0.60 0.68 0.60
5NYI 1.41 0.60 1.41 2.01
5J2X 5.90 0.83 6.84 1.98
6F1N 7.04 0.81 7.27 1.87
6ELO 0.37 0.31 0.37 0.31
5J64 1.53 0.54 1.56 1.56
6ELN 1.18 0.49 1.18 0.49
5J20 0.56 0.50 0.56 8.30
5J86 3.43 0.46 6.51 0.49
5J9X 0.76 0.66 0.76 0.67
6ELP 0.44 0.26 0.44 0.29
5J27 1.37 0.41 1.37 0.45
5LRZ 0.28 3.14 2.03 3.58
5LR7 0.45 9.83 0.45 9.88
2YKI 8.64 2.65 9.72 9.57
5LQ9 7.29 0.80 10.55 0.84
5LS1 1.14 0.84 1.14 1.12
5T21 1.21 0.94 1.21 1.31
6EYA 1.17 1.08 1.17 1.08
5LO6 0.92 0.61 0.92 0.61
5LNZ 0.91 1.10 0.91 1.31
6EY8 0.45 1.15 0.45 5.49
6EY9 0.95 0.39 0.95 1.29
5OCI 1.58 1.26 1.58 1.51
5ODX 0.77 1.07 6.24 1.10
5NYH 0.44 0.44 0.44 0.44
5OD7 0.53 0.48 0.53 0.51
6EI5 0.65 0.44 0.65 0.77
5LR1 0.22 0.42 0.22 0.42
6EL5 3.66 0.48 3.70 1.71
5LO5 1.40 1.13 4.49 1.13
2YKJ 0.37 1.61 0.37 9.32
Avg. 1.99 1.11 2.57 2.17

energy conformation was located in a different part of the
trajectory in 4 cases (PDB ID 5J20, 5LR7, 6EY8 and 2YKJ).
CaverDock failed in finding the correct conformation for the
closest and the lowest energy case for the complex 5LR7. The
docking did not reproduce the correct binding pose in this
case due to the large size of the search space, which might
be improved by setting a higher exhaustiveness. The high
RMSDs from CaverDock may be caused by incorrect orien-
tation of the ligand and also by the location of the original
inhibitor, which was far from the tunnel. The positions of
the inhibitors buried deep in the protein structure, outside
the access tunnels, may not be reachable by CaverDock since
the ligand is always spatially constrained to the disks.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel method for
analysis of the transport of ligands in proteins and its
implementation in CaverDock tool. We have developed a
restrained docking and a heuristics to analyze the ligand
movements in the tunnel. We have also introduced a new
algorithm for discretization of the protein tunnels. Our
approach extends the state-of-the-art by using molecular

docking for calculation of contiguous movements of the lig-
and within the tunnel. The calculation is faster and easier to
setup compared to MD but on the other hand overcomes the
limitations of geometrical methods. We have demonstrated
that CaverDock is robust and is able to analyze the ligand
transportation usually in minutes, or in a few hours in the
worst scenario.

In the future, we plan to improve CaverDock heuristics
to compute more alternative trajectories and to connect
promising, non-contiguous parts of trajectories more aggres-
sively. We expect to obtain lower energy for upper-bound
trajectories. Or, at least, generate upper-bound trajectories
with higher confidence, so the energy is not overestimated
due to insufficient sampling. Furthermore, we plan to im-
prove the receptor flexibility in CaverDock. With the current
version, only the side-chains can be flexible. The flexibility
of the protein backbone would allow to model situations
where the receptor’s flexibility plays a significant role in
the ligand passage. More precisely, we will explore the
possibility to use an ensemble of protein conformations
or coarse-grained MD to reproduce the movement of the
protein backbone.
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Jiřı́ Damborský is the Josef Loschmidt Chair
Professor of Chemistry at the Faculty of Science
at Masaryk University and a group leader at
the International Centre for Clinical Research in
Brno, Czech Republic. Research of his group
focuses on protein engineering. His group devel-
ops new concepts and software tools for protein
engineering (CAVER, CAVERDOCK, HOTSPOT
WIZARD, PREDICTSNP, FIREPROT, CALFIT-
TER, SOLUPROT, ENZYMEMINER), and uses
them for the rational design of enzymes. He has

published 200 original articles, 15 book chapters and filed 6 international
patents. He is a co-founder of the first biotechnology spin-off from
Masaryk University Enantis Ltd. Among the awards and distinctions he
has received is the award EMBO/HHMI Scientist of the European Molec-
ular Biology Organisation and the Howard Hughes Medical Institute.


