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1. INTRODUCTION 

Enzymes, as the natural catalysts, have evolved over millions of years to perform 

specific reactions within living organisms. Because of their large complexity and variability, 

the structural basis for their efficiency and specificity is not fully understood. At the same 

time, there is an increasing demand to engineer enzymes for the reactions needed for 

production of chemicals, pharmaceuticals, food, agricultural additives and fuels1–3.  

Many of known enzymes have their active sites buried inside their protein core, rather 

than exposed to the bulk solvent at the protein surface4–6. This may be due to several reasons, 

such as the need of solvent absence to carry out specific chemical reaction, a means of 

controlling the substrate specificity, or regulating the release of products to the surrounding 

solvent. These buried active sites are connected to the bulk solvent through tunnels, which act 

as the exchange pathways for the substances between a bulk solvent and the active site. Hence, 

taking into account the very complex mixture of proteins co-localized within a living cell, the 

tunnels can be very important systems for accomplishing the enzyme functions. Thus, 

additionally to the simplistic Fischer’s lock-and-key model7 or the more realistic Koshland’s 

induced-fit model8, the enzymes bearing tunnels can be described by a lock-keyhole-key 
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model4. This model takes into account that the key (substrate) needs to pass through a 

keyhole (tunnel) in order to reach the lock (active site). Considering this model it becomes 

very intuitive that access tunnels represent important structural features for regulating 

enzymatic functions. 

The enzymes frequently possess the structural elements for controlling the transport of 

substances through tunnels and channels, called gates9. Protein gates are dynamic systems 

which can reversibly switch between open and close states through conformational changes 

and by this way control the passage of molecules into and out of the protein. The gates 

provide a privileged mode for selecting the molecules that are allowed to enter the structure, 

as well as the frequency with which they can pass through. Protein gates have been described 

and studied before9–13, but the knowledge has been very dispersed until recently Gora et al.14 

surveyed the literature and systematized the information using a newly established 

classification system. 

Due to their primary importance for the enzyme structure and function; tunnels, 

channels and gates have revealed good potential for engineering of enzyme properties. There 

are many examples showing how mutations in the key residues defining the tunnel geometry 

or gate mobility have contributed to change activity, specificity, and stability of enzymes. The 

grand challenge in this context is to understand the structural basis and underlying 

mechanisms that will allow rational engineering of fully functional access pathways in the 

future. 

 

2. PROTEIN TUNNELS 

2.1 Structural basis and function 

Many of the known enzymes possess buried active sites, and one of the possible 

reasons is to regulate the substrate specificity or to create the suitable environment for their 
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chemical reaction. Because the terminology in the literature is diverse, herein we define 

protein tunnels as the transport pathways between the surface and the active sites which are 

buried inside the protein structures or connecting different active sites within the proteins or 

protein complexes; we define channels as the conduits connecting different parts of the 

protein surface through which the molecules may pass without transformation.4–6,15  

Structurally, the protein tunnels often contain a bottleneck, which is its narrowest part 

and is determinant of tunnel selectivity. The bottlenecks are often controlled by the gates that 

open and close the narrowest part of the tunnel with certain frequencies. The existence of 

tunnels and channels is not restricted to a small group of enzymes, but it is rather widespread 

and can be found in all the six enzyme classes. There are proteins containing: (1) channels 

passing throughout the structure connecting two different parts of protein surface; (2) one 

single tunnel connecting the surface with the buried active site cavity; (3) more than one 

tunnel connecting the surface with the buried active site; and (4) more than one active site 

connected with each another and with the surface by several tunnels (Figure 1). 
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Figure 1. Channels and tunnels in proteins. Examples of proteins containing a channel (1, 

NaK channel), and one single tunnel (2, Candida rugosa lipase) or multiple tunnels (3, 

[NiFeSe]-hydrogenase) connecting the active site cavity with the bulk solvent, or a tunnel 

connecting different active sites (4, carbamoyl phosphate synthetase). The channels and 

tunnels are represented in orange colour and the active sites in purple. 

 

In the first class (1), the channels serve as a pathway for the substances to cross the 

protein structures, for which there is usually a well regulated mechanism. We may find them, 

for example, in the ion channels,16,17 which allow the crossing of specific ions through 

membrane proteins (K+ channel, Ca2+ channel, etc.), in ion pumps (Na+/K+-adenosine 

triphosphatase18,  neurotransmitter transporter,19 etc.), or in the porins20. 
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In the second class (2), a single tunnel connecting a deeply buried active site with the 

surface has the role for exchange of the substrates, products, and solvent molecules 

throughout the catalytic cycle. Many enzymes possess one permanent tunnel as well as 

several transient tunnels, which can be revealed only by studying protein dynamics (Figure 2). 

Transient tunnels occur upon dynamic conformational changes or protein gating mechanisms, 

and their emergence may be stochastic or induced by the binding of a substrate or the 

presence of a ligand molecule to be transported6. As examples of enzymes with only one 

tunnel are oxidoreductases (e.g. cytosolic sheep liver aldehyde dehydrogenase21, pyruvate 

oxidase22, amine oxidase23, 4-hydroxybenzoate hydroxylase24), transferases (glutathione S-

transferase25, lipoate-protein ligase A26), hydrolases (Candida antarctica lipase A27, Candida 

rugosa lipase28, Agrobacterium radiobacter epoxide hydrolase29,30, neurolysin31), lyases (β-

hydroxydecanoyl thiol ester dehydrase32), and isomerases (glutamate racemase33,34). 

In the third class (3), several tunnels are connecting the buried active site with the 

surface, and they may or not serve the equivalent purpose in the catalytic process. In some 

cases their roles are distinct. One such an example is the cytochrome P450, which has a main 

22 Å-long hydrophobic tunnel with the role in substrate access and product egress, while 12 

other secondary tunnels allow the exchange of oxygen and solvent molecules and also provide 

alternative pathways for the product release. Similarly, the haloalkane dehalogenases possess 

a main tunnel, used for the halogenated substrate, alcohol and halide products exchange, and 

several secondary tunnels are used for the alcohol release and water solvent exchange35. 

Multiple tunnels have been identified in the structures of oxidoreductases (cytochromes36, 

catalase37, Ni-Fe hydrogenase38, lipoxygenase 12/1524, L-amino acid oxidase39), hydrolases 

(haloalkane dehalogenases DhaA35,40,41 and LinB40,42,43,  acetylcholinesterase44), and 

isomerases (∆5-3-ketosteroid isomerase45). 
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Finally, in the fourth class (4), we find multifunctional enzymes and multienzyme 

complexes, which contain separate active sites interconnected by the tunnels. These enzymes 

are able to carry out sequential reactions, in which an internal pathway conducts the 

intermediate products from one catalytic site to another. This mechanism may be necessary to 

increase the enzyme's efficiency to: (i) prevent potentially toxic intermediates to be released 

into the medium, (ii) avoid labile intermediates to be released into the medium and undergo 

side reactions, or (iii) reduce the transfer time between different catalytic sites. Such transfer 

process is always tightly regulated, often through molecular gating mechanism. In this type of 

enzymes we find oxidoreductases (glutamate synthase6,46), transferases (glucosamine 6-

phosphate synthase6,47, glutamine phosphoribosylpyrophosphate amidotranferase6,48, and 

acetyl-CoA synthase49), imidazole glycerol phosphate synthase6,50), lyases (tryptophan 

synthase6,51,52, and ligases (carbamoyl phosphate synthetase6,53–55, asparagine synthetase6,56). 
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Figure 2. Permanent and transient tunnels in proteins. Example of a protein containing 

permanent and transient tunnels, shown by the dynamics of their bottleneck radii: tunnel 1 is 

permanently open (bottleneck radius > 1.4 Å almost all the time); tunnel 2 has closed and 

open periods, and hence it is considered a gated tunnel; tunnel 3 is permanently closed 

(bottleneck radius < 1.4 Å most of the time). Although tunnels 2 and 3 were both closed in the 

beginning of the simulation, they revealed different importance and behaviours with the MD. 

Only tunnels wider than 1 Å radius are displayed here. 

  

The single most important function of protein tunnels is to control the ligands entry to 

the active site. The selection of the ligands which may pass through the tunnels prevents the 

formation of non-productive complexes in the binding site, which would reduce the enzyme 

efficiency. It may also avoid the poisoning of the active centre by certain compounds and by 
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this way completely inactivating the catalyst, like transition metal ions-dependent 

metalloenzymes. Tunnels connecting multiple active sites may also prevent the release of 

toxic intermediate products or metabolites into the cell. The same class of tunnels provide an 

excellent way for synchronizing reactions which require the contact of multiple substrates or 

cofactors; control the order of multistep catalytic reactions and provide the environment for 

carrying out reactions which require the absence of water. These functions are particularly 

important considering the thousands of proteins and ligands that are simultaneously co-

localized within a living cell.  

 

2.2. Identification methods 

Two primary experimental methods that allow direct identification of the tunnels and 

channels within the protein structures to the atomic resolution are X-ray crystallography and 

nuclear magnetic resonance (NMR) spectroscopy. These experimental techniques are often 

followed by theoretical analyses using molecular dynamics (MD) simulations.  

In the last few decades, advances in biological chemistry were boosted by the 

determination of high-resolution three-dimensional structures of proteins by X-ray 

diffraction , which allowed a deeper understanding of the underlying catalytic mechanism of 

enzymes at the atomic level6. Likewise, also the tunnels of some enzymes started being 

described into greater detail and their functions being better understood. The higher is the 

number of crystal structures solved, the deeper is the knowledge attained about that enzyme 

by sampling different conformational states. However, crystallography only supplies static 

structures and cannot show metastable conformations, and hence the insight given about the 

transient tunnels can be limited.  

NMR spectroscopy can also provide the 3D structures of proteins, either from 

solution or solid state studies. But rather than a single structure, the NMR analysis supplies 
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results in the form of ensembles. Modern protein NMR spectroscopy has largely developed in 

the last 10-15 years, and currently it is possible to observe the dynamics of proteins at the 

atomic level by using specific methods, in the timescales ranging from picoseconds to 

seconds57–59. Therefore, NMR spectroscopy has the potential to supply relevant information 

regarding not only the permanent tunnels, but also the transient ones. In some cases, the 

transient states of tunnels and channels have indirectly been investigated by using particular 

methods of NMR. For example, water magnetic relaxation dispersion (MRD) has been used, 

in combination with molecular dynamics simulations, to track the internal water molecules 

buried inside myoglobin60 and the bovine pancreatic trypsin inhibitor61; and solid-state NMR 

spectroscopy (ssNMR) has been used to track the buried water molecules within a K+ 

channel in different gating modes62. 

MD simulation is the method par excellence for detecting and studying the transient 

tunnels in proteins. MD simulates the behaviour of a molecule under certain conditions of 

pressure and temperature, preferably in the presence of explicit solvent molecules. AMBER,63 

CHARMM,64 GROMACS65 and NAMD66 are among the most used software packages to 

perform such calculations. However, this important and widespread method still has its 

limitations. One of them is the timescale which is possible to survey. Long timescales are very 

demanding in terms of calculation time and computational resources. Unless one has access to 

very expensive resources, such as the ANTON supercomputer67, it is currently possible to 

reach only the hundreds of nanoseconds’ or few microseconds’ timescales, by using graphics 

processing units68. Several techniques have recently emerged to overcome such limitation and 

sample a broader conformation space: accelerated molecular dynamics69,70, conformational 

flooding71,72, hyperdynamics73,74, and metadynamics75,76, which allow sampling of a 

conformational space comparable to the millisecond timescale.  
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Tunnel dynamics can also effectively be studied by simulating protein-ligand 

complexes. Ligands may induce conformational changes in the protein and by this way affect 

the shape of the tunnel and/or frequency of gating. This can be studied  by MD simulations 

that make use of extra forces to let the ligand move through the tunnels, either randomly in 

the random acceleration molecular dynamics, RAMD77,78, or with directed forces in the 

steered molecular dynamics, SMD79–81. These procedures can also elucidate the energy 

profile along the ligand pathway, the preference of a certain ligand for one or another tunnel, 

or the tunnel-specificity towards particular ligands. 

Because of the high complexity of most systems, visual inspection is unlikely to be 

sufficient for identifying the voids in protein structures, such as clefts, pockets, pores, tunnels, 

and channels. Several specialized software tools are currently available to accurately calculate 

those voids. The most commonly used programs for calculation of tunnels and channels in 

proteins are CAVER ,15 MOLAXIS ,82 and MOLE 83. These programs mainly differ in the 

model used to describe the protein and the boundary between the surface and the bulk solvent; 

the algorithms used to calculate the tunnels and the cost of individual tunnels; the way of 

treating multiple tunnels and the ability to analyse multiple structures. All of them can 

identify the static tunnels in single structures, but only the first two can handle ensembles of 

structures to calculate dynamic tunnels. Detailed description and comparison of these tools is 

provided in the recent review by Brezovsky et al.84  

 

2.3. Molecular engineering 

It has been observed in many cases that the mutation of residues far from the active 

site have led to important enhancements in enzymatic properties such as activity, specificity, 

enantioselectivity, stability, etc. Whereas for most enzymes with solvent-exposed catalytic 

sites the mutations in or near the substrate-binding residues have been more successful85, for 
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the enzymes with buried active sites the situation can be different. It may be difficult to find 

the residues susceptible to mutagenesis without disrupting the active site architecture. On the 

other hand, mutations targeting the residues far away from the active site are more likely to be 

accepted without loss of function. Considering the important roles of the access pathways, 

their modification appears to be an attractive possibility for generating functional variants 

with rationally tuned properties.  

For the enzymes with buried active sites and rate-limitation at the substrate entry or 

product release, the catalytic activity can be effectively engineered by pathway modification. 

The most promising residues to perform positive mutations are those forming the bottleneck. 

There are a number of reports on activity improvements by modification of tunnel residues. 

Among these we may find oxidoreductases (cholesterol oxidase86,87, pyruvate 

dehydrogenase88, ferredoxin glutamate synthase89, carbon-monoxide dehydrogenase90, 

catalase91–93, toluene-o-xylene-monooxygenase94,95, toluene 4-monooxygenase96–98, 4-

hydroxybenzoate hydroxylase24, cytochrom P45099–104, transferases (glucosamine-6-

phosphate synthase105, β-ketoacyl-acyl-carrier-protein synthase106, undecaprenyl 

pyrophosphate synthase107, RNA-dependent RNA polymerase108), hydrolases (lipase109,110, 

acetylcholinesterase111,112, epoxide hydrolase113, haloalkane dehalogenases114,115), lyases 

(tryptophan synthase116,117, 3-hydroxydecanoyl-acyl carrier protein dehydratase118, halohydrin 

dehalogenase119), and isomerases (squalene-hopene cyclase120), asparagine synthetase121, 

carbamoyl phosphate synthetase54,122). In our laboratory, Pavlova et al.115 performed saturated 

mutagenesis in the tunnel residues of the haloalkane dehalogenase DhaA, aiming at increasing 

its ability to degrade the toxic anthropogenic compound 1,2,3-trichloropropane. These efforts 

resulted in the discovery of a variant DhaA31 containing five mutations, four of them located 

in the access tunnels. DhaA31 showed 32-fold enhancement in the overall catalytic activity 

due to an increase in rate of the carbon-halogen bond cleavage rate and a shift of the rate-
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limiting step to the product release. Modelling studies revealed that the origin of the enhanced 

activity is the lower number of water molecules in the active site, which would otherwise 

hinder the formation of the activated complex.115 

Mutations in the tunnel residues may also modulate the enzyme specificity or the 

enantioselectivity. This is rationalised considering that the access tunnels are the first sieves 

prior to the molecules access the active site. Hence, by changing their physicochemical 

properties or stereochemistry, one may tune the type of substrates or stereoisomers that are 

able to pass through and enter the active site. Examples can be found among oxidoreductases 

(aminoaldehyde dehydrogenase123, amine oxidase124, toluene 4-monooxygenase98, 4-

hydroxybenzoate hydroxylase24, cytochrom P45099, alkane hydroxylase125), transferases 

(chalcone synthase126,127, polyketide synthases128, cellobiose phosphorylase129, octaprenyl 

pyrophosphate synthase130, undecaprenyl pyrophosphate synthase107), hydrolases 

(arylesterase131, lipase110,132,133, epoxide hydrolase113,134, haloalkane dehalogenase114,135), 

lyases (hydroxynitrile  lyase136,137), isomerases (squalene-hopene cyclase120). Chaloupkova et 

al.114 from our lab designed and constructed a complete set of single-point mutants of the 

haloalkane dehalogenase LinB at the position L177, which is the residue located near the 

entrance to the main tunnel. Fifteen active variants showed activities and specificities towards 

the halogenated substrates very different from the wild type, and the activities correlated with 

the size and the hydrophobicity of the amino acid introduced. 

Improvements of protein stability  may also be achieved through tunnel engineering. 

It may occur in case the permeability of the tunnels to the water or organic solvent is changed 

in such a way that the hydrophobic packing of the protein is enhanced. In this case the protein 

becomes less affected by the presence of an organic cosolvent or temperature rise, thus 

increasing its general stability. This has been the case of the haloalkane dehalogenase variant 

DhaA85, which carried four mutations in the tunnel-lining residues138. Compared to the wild 
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type enzyme, this variant revealed an increase of its melting temperature by 19 °C in aqueous 

buffer, and a half-life rise from minutes to weeks in 40% dimethyl sulfoxide. 

One last example of how significantly the enzyme catalytic properties can be affected 

by modifications on the access tunnel is the change of the mechanism of the catalytic cycle. 

Biedermannova et al.139 have observed a change in the kinetics mechanism for the conversion 

of 1,2-dibromoethane by the  LinB L177W variant, associated with a dramatic change of 

substrate specificity. The substitution of the tunnel-lining leucine at position 177 for a bulkier 

tryptophan changed the bromide ion binding kinetics from a one-step to a two-step 

mechanism, and significant drop in the bromide release rate (from >500 s-1 to 0.8 s-1).  

 

3. PROTEIN GATES  

3.1 Structural basis and function 

Many enzymes possessing tunnels or channels also contain some type of gate, since 

the traffic of ligands, ions and solvent in those pathways is susceptible to regulation. However, 

the gates are not limited to the enzymes containing tunnels. Molecular gates can be found in a 

wide variety of biological systems, such as enzymes, ion channels, protein-protein complexes, 

and protein-nucleic acid complexes. The gates present in enzymes may have three major roles: 

(1) control the access of the substrate to the active site; (2) control the access of the solvent to 

the active site; and (3) synchronization of molecular events occurring at different locations of 

the protein.  

Considering the substrate access (1), the gates may account for the substrate 

specificity of the enzyme. Based on physico-chemical (polarity, lipophilicity, charge, 

polarizability, etc.) and geometric (bulkiness, length, stereochemistry, etc.) properties, gates 

can act as filters that control which compounds can pass through and which cannot. Examples 

of such case is the NiFe hydrogenase, which blocks the access of oxygen over carbon 
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monoxide140,141, the catalase which is more permeable to the entry of hydrogen peroxide than 

water142,143, cytochromes P45036,144, epoxide hydrolases113, and undecaprenyl-pyrophosphate 

synthases107, cellobiohydrolase I145.  

Concerning the solvent access (2), in some cases the catalytic reaction requires 

reduced number or absence of water molecules in the active site. In those cases it is 

fundamental to control the access of solvent to the catalytic site by a gate. The mechanisms 

regulating solvent accessibility can permit entry of the solute alone, allow entry of only a 

limited number of water molecules, or even to restrict the access of water molecules to some 

parts of the active site cavity, e.g., cytochromes P45036, carbamoyl phosphate synthetase122, 

imidazole glycerol phosphate synthase146 and glutamine amidotransferase105,147. In other cases, 

water molecules are not allowed to enter the active site, unless the substrate or cofactor is 

present, such as in rabbit 20α-hydroxysteroid dehydrogenase148.  

Synchronization of reactions (3) may occur in the enzymes with more than one 

active site, interconnected by the tunnels. In this case only the proper intermediate from the 

first reaction is allowed to cross the gate and access the second site. This may be necessary in 

cases of instability or toxicity of intermediate, or to avoid their unfavourable hydration. 

Examples of enzymes with gates involved in synchronization of reactions are the carbamoyl 

phosphate synthetase122, asparagine synthetase121, glucosamine 6-phosphate synthase105, and 

glutamate synthase149, all of which possess tunnels for ammonia transportation, and the first 

one also for carbamate; tryptophan synthase for indole117, and carbon monoxide 

dehydrogenase/acetyl coenzyme A synthase for carbon monoxide transportation150. 
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Figure 3. Classification of molecular gates. Examples and respective schematic 

representation: wing (1, α-amylase), swinging door (2, methane monooxygenase hydroxylase), 

aperture (3, acetylcholinesterase), drawbridge (4, triosephosphate isomerase), double 

drawbridge (5, HIV protease), and shell (6, acylaminoacyl peptidase). The gating elements 

are represented in red colour and the access tunnels in orange. 
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Molecular gates can operate based on a very diverse structural basis, involving side 

chain conformational changes of one or more residues, movement of the backbones of a few 

residues, of longer peptide chains, loops or other secondary elements, or even the motions of 

entire domains. Gates have been classified according to their structural-basis: (1) wings – 

single residue motion; (2) swinging doors – two residues motion; (3) apertures – backbones 

motion of several residues; (4) drawbridges and (5) double drawbridges – motions of loops 

and secondary elements; (6) shell – motion of a domain (Figure 3)14. 

Wing (1) corresponds to the side chain rotation of one single residue. It represents the 

simplest of all types of gating mechanisms and is also the most common14. The movement of 

wing gates cannot be large in amplitude and have quite small activation barriers. They are 

typically located at the bottlenecks of tunnels or channels. Interactions with certain residues, 

termed “anchoring residues”, allow stabilization of each state. Such interactions can be H-

bonds, salt bridges, π-π contact, etc. The most common amino acids involved in this type of 

gating are W, F and Y14. Examples of the enzymes containing wing gates are the imidazole 

glycerol phosphate synthase146, cytidine triphosphate synthetase151, methane monooxygenase 

hydroxylase152, FabZ β-hydroxyacyl-acyl carrier protein dehydratase118, cytochrome 

P450144,153, and cellobiohydrolase I145. 

Swinging door (2) corresponds to two amino acids’ side chains moving in a 

synchronized manner and represents the second most frequent type of gating. In this case, the 

closed state involves a close interaction between the gating residues, operated either through 

π-π stacking (F-F, F-Y, W-F, pairs), ionic interactions (R-E, R-D pairs), aliphatic 

hydrophobic contacts (F-I, F-V, F-L pairs), aliphatic interactions (L-I, L-V, R-L, pairs), or H-

bonds (R-S pair). However, the most common interacting pair in the swinging-door type of 

gate is F-F14. Examples of enzymes bearing such type of gates are the acetylcholinesterase154, 
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toluene-4-monooxygenase155, and the cytochromes P4503A4
102,156, P450cam, P450BM3, and 

P450eryF
144,153. 

Aperture  (3) corresponds to another type of residue movements, this time involving 

the backbone atoms of two to four residues without the need for side chain movements. In this 

case it is common to observe several of the bottleneck residues of a tunnel performing a 

synchronized motion towards each other. Enzymes containing this type of gating are, for 

example, the carbamoyl phosphate synthetase122, choline oxidase157, glutamate synthases158, 

extradiol dioxygenases-homoprotocatechuate 2,3-dioxygenase159, cytochrome P450eryF
144, and 

acetylcholinesterase160. 

Drawbridge (4) and double drawbridge (5) function by the motions of loops or 

secondary structure elements, involving one or two elements, respectively. These types of 

gates are privileged mechanisms to control the access of large ligands, which cannot be 

accomplished by the previously described types of gates. The loops may even be involved in 

the formation of the binding cavity for the substrate or cofactor. In some cases, the gating can 

also be part of complex machinery that controls the opening and closing of different tunnels, 

merges several tunnels, or even forms smaller and more selective gates. The cytochrome P450 

family is a good example of such large complex gating system36,102,161,162.  

Shell (6) is represented by large motions of entire protein domains. It can be found in 

ion channels12, but also in enzymes that catalyse reactions with very large substrates, such as 

RNA polymerase163. Such type of domain-displacement gating may also serve the purpose of 

a stricter control of the tunnel networks, in order to prevent the substrate leakage, e.g., 

dehydrogenase/acetyl coenzyme A synthase90, epoxide hydrolase from Mycobacterium 

tuberculosis164, phospholipase A2165, and prolyl oligopeptidase166. 
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Concerning the location, the enzyme gates can be found at: (1) the entrance to or even 

at the active site itself; (2) the mouth or the bottleneck of the access tunnel; (3) the interface 

between the active site and cofactor binding site (Figure 2). 

Entrance to the active site (1) is a very suitable location for a gate which directly 

controls the access of the substrate to the active site. It can either prevent the entry of the 

substrate before the catalytic residues are properly oriented or act as a substrate sieve to 

control selectivity. In particular cases, the gating may even be operated by the residues which 

are part of the active site167. Examples of enzymes bearing gates at the catalytic site or its 

entrance are acetylcholinesterase154, imidazole glycerol phosphate synthase146, glutamate 

synthase149, toluene-o-xylene monooxygenase167, monooxygenase168, choline oxidase157, NiFe 

hydrogenases141, carbonic anhydrases169, formiminotransferase-cyclodeaminase170, type III 

polyketide synthases171, and FabZ β-hydroxyacyl-acyl carrier protein dehydratase118. 

Mouth or bottleneck of tunnels (2) is the most common location of a gate in 

enzymes14. Tunnels connecting buried active sites with protein surface are privileged 

structures to control the access of ligands and solvent. Therefore, they are naturally privileged 

locations for the gates. The mouth of the tunnel is the first barrier that a molecule faces before 

entering into a tunnel. On the other hand, the bottleneck is the narrowest part of a tunnel, and 

it may be regarded as one of the easiest hotspots for controlling the molecules being 

transferred. Figure 2 presents different dynamics of the bottleneck radius in a tunnel with and 

without a gate. Examples of enzymes containing gates located in tunnels are the cholesterol 

oxidase type I172, toluene-4-monooxygenase155, undecaprenyl-pyrophosphate synthase107, 

homoprotocatechuate 2,3-dioxygenase159, 4-hydroxy-2-ketovalerate aldolase/acylating 

acetaldehyde dehydrogenase173, epoxide hydrolase from Aspergillus niger M200113, and FabZ 

β-hydroxyacyl-acyl carrier protein dehydratase118, glucosamine 6 phosphate synthase105, 
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imidazole glycerol phosphate synthase146, cytidine triphosphate synthetase151, carbamoyl 

phosphate synthetase122 and glutamate synthases149. 

Entrance to cofactor cavity (3) is also a suitable location for a gate, since the 

interface between the cofactor cavity and the active site often plays a critical role in the 

catalytic process. The gates in these locations may control the binding rate of the cofactor to 

the enzyme. Examples are the NADH oxidase174, 3-hydroxybenzoate hydroxylase175, 4-

hydroxy-2-ketovalerate aldolase/acylating acetaldehyde dehydrogenase173, and cholesterol 

oxidase type I172 and type II176. In more specific cases, the cofactor may perform the gating 

function by opening the access tunnels for the substrates, such as in 

digeranylgeranylglycerophospholipid reductase177. 

 

3.2. Identification methods 

Identification and description of a gating process is not simple task because of their 

complexity, and hence experimental and modelling techniques are usually combined with 

each other. The X-ray  crystallography can provide important insights on the possible 

presence of gating mechanisms in some proteins. The existence of different crystal structures 

with amino acid residues, or even larger elements, in different conformation, may be a good 

indication of a gating process occurring in that system. Trough X-ray ensembles, for instance, 

it is possible to infer about protein flexibility, dynamics and function178. However, it is 

necessary that both open and closed states have been captured with significant representation. 

Examples of enzymes with gates identified by this technique are the tryptophan synthase179, 

haloalkane dehalogenase LinB43, L-amino acid oxidase180, toluene-o-xylene 

monooxygenase181, acetylcholinesterase160 and phospholipase A2165.  

Similarly to the identification of the protein tunnels, the NMR spectroscopy may 

supply important evidences regarding the presence of gates in proteins. Advanced solution or 
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solid state NMR methods may be used to study the dynamics of protein systems and give 

insight to the conformational changes. These methods may survey very different timescales, 

ranging from picoseconds to seconds,57–59 thus allowing to study different types of gating 

mechanisms. It is even possible to study the less populated conformations and the exchange 

rate between different conformations62,182,183. NMR spectroscopy has been used, for instance, 

to investigate the conformational changes in the gating of triosephophate isomerase184–186, 

HIV-1 protease187, and dihydrofolatereductase188. 

Fluorescence-based methods have become very popular in investigating biomolecular 

systems, namely in detecting and characterizing conformational changes in proteins. Hence, 

although not often used for that purpose, they have great potential to investigate protein gates. 

Fluorescence emission by fluorophore groups is dependent of the immediate surrounding 

environment, namely the polarity of the neighbouring molecules or residues. Hence, it can be 

used to detect changes in the microenvironment of fluorescent residues within the proteins, 

thus allowing tracking of eventual conformational changes. Intrinsic tryptophan 

fluorescence emission (ITFE), for instance, has been used to study the closed and open 

conformations of a dimeric phospholipase A2 homologue165 and cytochrome c oxidase189. 

Other methods employ unnatural fluorescent probes to track the dynamics of proteins. These 

can be covalently bonded190, or inserted as part of the protein by mutagenesis with unnatural 

fluorescent amino acids191. Time-resolved fluorescence spectroscopy can be applied with 

different methods and assess the dynamics of events occurring in timescales ranging from 

femtoseconds to nanoseconds192. This technique has been used, for example, to study the 

hydration and protein dynamics at the tunnel mouth of haloalkane dehalogenases190,193 

Fluorescence (or Förster) resonance energy transfer (FRET) is a method that makes use 

two fluorophores, a donor and an acceptor, which perform nonradiative energy transfer with 

each other and are bound to the protein at a certain distance. The efficiency of this energy 
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transfer is proportional to the sixth power of the distance between the two fluorophores, and is 

correlated to the changes of their fluorescence spectra. Since the conformational changes in 

the protein will affect the distance between the two fluorophores, this method can report on 

the dynamics of the specific parts of protein. FRET is a versatile technique that can be used 

not only intra, but also intermolecularly to study the protein functions and interactions with 

other proteins, or even in living cells.191,194–196 It can be applied on average ensembles or 

single-molecule studies, giving great insight on the dynamics and kinetics of conformational 

changes occurring in timescales ranging from nanoseconds to seconds or even minutes197–199.  

MD  simulation is a very important theoretical technique for identifying and 

characterizing protein gates. This method has been described in section 2.2, and it can be used 

to sample the different conformational states of a protein gate, their respective energies, and 

interconversion frequencies.  It may be difficult to survey the timescales of certain gates 

involving larger movements by using classical MD, namely apertures (ns–µs), drawbridges 

and double drawbridges (ns–µs), or shell gates (ms–s)14. In these cases, the enhanced-

sampling techniques, i.e., accelerated molecular dynamics, conformational flooding, 

hyperdynamics and metadynamics must be used. In addition to these, the Brownian 

dynamics simulations have also been used to investigate gates of enzymes157,200, while 

several other methods may be used to study the dynamics of ligand binding to proteins and 

give important insight to gating processes201. For the proteins bearing gates at their tunnels, 

the study of tunnels’ dynamics is essential. For that, the use of specialized programs for 

performing tunnel analysis in MD trajectory is necessary to determine bottleneck residues and 

potential key residues involved in the gates. CAVER  3.015,84 is currently the only software 

tool that can handle analysis of large trajectories and supply information about various time-

dependent tunnel properties. 
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3.3. Molecular engineering 

Three main approaches of gate engineering can be followed: (1) Gates can be modified 

by mutating the residues of existing gates, the hinge or the anchoring residues. In this way it 

may be possible to rationally modify the gate amplitude, frequency or the affinity towards 

certain substrates or solvent. (2) Gates can be removed by mutating the gating residues in 

order to leave the pathway permanently open. This could lead to an increase of the ligand 

exchange rate, but also change the access of the solvent. (3) Gates can be introduced into 

enzyme pathways that were originally open, thus providing control over the transport of 

substances. It can be achieved by mutating tunnel-lining residues, preferably in the bottleneck 

or in the entrance.  

Modification of catalytic activity by gate engineering can be easily rationalized 

considering exchange of substrates and products at gate-controlled rates, which limit the 

overall catalytic cycle. Gate can also control access of water molecules to the active site, 

making the chemical reaction more or less favoured. There are many examples wherein the 

enzyme activity has been changed by mutation of gate residues. Oxidation of p-nitrophenol in 

toluene-o-xylene monooxygenase was improved the by 15-fold due to E214G mutation94. 

Also in lipase from Burkholderia cepacia it was observed an overall 15-fold increase of 

specific activity towards (R,S)-2-chloro ethyl 2-bromophenylacetate by the double mutation 

L17S+L287I110. Several mutations on V74 and V74+L122 residues in NiFe hydrogenase 

attained reduced transport rates of CO and O2 molecules through the tunnel, thereby 

increasing the resistance of that enzyme to the inhibition by these molecules141. The gate 

removal in tryptophan synthase with the F280C or F280S mutations led to increase the rate of 

indole binding116. In imidazole glycerol phosphate synthase, gate removal by T78A mutation 

increased the ammonia transfer rate and also the overall enzyme activity146. On the other hand, 

a gate disruption by R5A led to an increased access of water to the active site, which impaired 
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the enzyme activity. The same mutation also caused ammonia to leak through the inter-

domain tunnel to the bulk solvent, resulting in 103-fold decrease of the cyclase reaction rate146. 

A similar ammonia leakage was observed with G359F and G359Y mutations in carbamoyl 

phosphate synthetase202,203. The gate removal in FabZ β-hydroxyacyl-acyl carrier protein 

dehydratase by mutation Y100A leaves the active site exposed to the bulk solvent and results 

in a much stronger binding of the product to the active site, reducing the enzyme activity by 

50%118. The DhaA31 mutant with enhanced activity for 1,2,3-trichloropropane, developed in 

our laboratory by Pavlova et al.35,115, contains substitutions at the main tunnel residues C176Y 

and V245F. Unpublished MD simulations demonstrated the existence of a gating mechanism 

involving these residues, which controls the access of ligands and solvent to the tunnel. This 

is a case of gate insertion that resulted in improvements of the enzyme activity. 

Substrate-specificity of the enzymes has also been modified by gate engineering. It 

can be rationalized by the fact that gates control the nature and geometry of the substrates 

accessing the active site and change in the gate may result in shift of substrate specificity. The 

specificity increase of toluene-o-xylene monooxygenase towards the oxidation of p-

nitrophenol was observed upon mutation of gating E214G94. A double mutant (L17S+L287I) 

of Burkholderia cepacia lipase resulted in 178-fold improvement of the E-value towards 

(R,S)-2-chloro ethyl 2-bromophenylacetate compared to the wild-type.110 Q230P mutation at 

the hinge region of rabbit 20α-hydroxysteroid dehydrogenase decreased the flexibility of loop 

B, which led to narrowing its specificity compared to the wide range of substrates148. The gate 

removal from toluene-4-monooxygenase, by the D285I and D285Q mutations at the tunnel 

entrance, increased its ability to hydroxylate bulkier substrates as 2-phenylethanol and 

methyl-p-tolyl sulphide by 8- and 11-fold, respectively96. Mutations at the access tunnel of 

Candida rugosa lipase changed its substrate specificity in terms of the fatty acids’ chain 

lengths accepted. Introduction of bulkier aromatic residues at the entrance or inside the tunnel 
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changed the substrate specificity profile. We speculate that these mutations are likely to have 

introduced some type of gating common for F and W residues, e.g., wing or swinging door 

gates132.  

Modulation of product specificity by mutation of gate residues has been reported in a 

few cases. Escherichia coli undecaprenyl-pyrophosphate synthase condenses the isopentenyl 

pyrophosphate with allylic pyrophosphate units to generate linear isoprenyl polymers. It was 

found that a gate formed by the flexible loop controls the extent of the reaction and the 

product release, and thus the length of the polymer formed. The L137A mutation, located at 

the bottom of the tunnel, led to formation of C70 polymer rather than the smaller C55 in the 

wild-type. On the other hand, the A69L mutant produces the smaller C30 polymer instead107.  

To the best of our knowledge, there have been no reports regarding protein stability  

enhancements achieved by gate modification to date. However, considering the structural 

basis for improving enzyme stability204–206, it should be in principle possible to construct 

stable mutants by engineering enzyme gates. 

 

4. CONCLUSIONS 

Molecular tunnels, channels and gates are structural features widely represented in the 

protein world. Protein tunnels can be found in any enzyme containing a buried active site, in 

which they serve as a pathway connecting the active site with bulk solvent or connecting 

multiple active sites. We note that proteins containing tunnels of some type can be found in all 

six classes of enzymes and same is true also for enzyme gates. The gates can be very diverse 

in terms of localization, involved structural elements, amplitude and frequencies of motion.  

Tunnels, channels and gates play important roles and in some cases are essential for 

enzymatic catalysis. They control the transport of small ligands and solvent molecules to and 

from the active site, and in this way modulate enzyme activity and substrate specificity. 
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Furthermore, they enable synchronization of molecular events taking place in distinct part of 

the protein structure and control properties of the active site environment during individual 

phases of a catalytic cycle. 

We have surveyed existing methods suitable for the study of tunnels, channels and 

gates in the protein structures. The X-ray crystallography is one of the most important 

experimental tools for identification of permanent tunnels and channels, while it is less 

suitable for visualization of transient structures and the gates. The NMR spectroscopy may 

supply missing information on dynamical protein structures. Fluorescence spectroscopic 

methods may provide additional evidences for conformational changes in proteins and reveal 

details about the gating processes. Classical and enhanced variants of MD are currently one of 

the most useful tools for identifying and characterizing transient tunnels and gates. Combined 

with specialized void-detection tools, MD allows exploration of a large conformational space 

and study of the mechanisms involved in dynamical processes. 

Due to their structural and functional importance, molecular tunnels and gates appear 

to be very attractive targets for protein engineering. The provided examples demonstrate that, 

by changing a specific tunnel or gate residue, it is possible to modify enzyme properties such 

as activity, specificity, enantioselectivity and stability. It is already possible to tune properties 

of a target enzyme by performing such modifications in a rational manner. With further 

expansion of our knowledge on enzyme tunnels and gates, it will be possible to design these 

fascinating structural features de novo in the future.  
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